会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • OPTICAL DEVICE
    • 光学装置
    • WO2012126887A1
    • 2012-09-27
    • PCT/EP2012/054813
    • 2012-03-19
    • CARL ZEISS SMT GMBHFREIMANN, RolfFELDMANN, Heiko
    • FREIMANN, RolfFELDMANN, Heiko
    • G01M11/02G03F7/20
    • G01M11/00G01M11/02G03F7/70358G03F7/70591Y10T428/24802
    • A device comprising an imaging optical unit (9) for imaging an object field (5) in an image field (10), a structured mask (7), which is arranged in the region of the object field (5) by means of a reticle holder (8) that can be displaced in a reticle scanning direction (21), and a sensor apparatus (25), which is arranged in the region of the image field (10) by means of a substrate holder (13) that can be displaced in a substrate scanning direction (22), wherein the mask (7) has at least one measurement structure (27; 33) to be imaged on the sensor apparatus (25), wherein the sensor apparatus (25) comprises at least one sensor row (28) with a multiplicity of sensor elements (29), and wherein the sensor apparatus (25) is embodied such that it affords the possibility of testing the imaging optical unit (9) during the displacement of the substrate holder (13) for exposing a substrate (12) arranged on the latter.
    • 一种装置,包括用于对图像场(10)中的物场(5)进行成像的成像光学单元(9),结构化掩模(7),其被布置在物场(5)的区域中,借助于 可以在掩模版扫描方向(21)上移位的标线保持器(8)和传感器装置(25),其通过衬底保持器(13)布置在图像场(10)的区域中,该衬底保持器 在衬底扫描方向(22)上移位,其中掩模(7)具有要在传感器装置(25)上成像的至少一个测量结构(27; 33),其中传感器装置(25)包括至少一个 具有多个传感器元件(29)的传感器行(28),并且其中所述传感器装置(25)被实施为使得其在所述基板保持器(13)的位移期间提供测试所述成像光学单元(9)的可能性, 用于暴露布置在其上的衬底(12)。
    • 5. 发明申请
    • METROLOGY SYSTEM
    • 计量系统
    • WO2011161024A1
    • 2011-12-29
    • PCT/EP2011/060155
    • 2011-06-17
    • CARL ZEISS SMT GMBHFELDMANN, Heiko
    • FELDMANN, Heiko
    • G01N21/956
    • G01B11/25G01B11/30G01N21/956G01N2021/95676G03F1/24G03F1/84
    • A metrology system for investigating objects (2) has an imaging optical system for imaging an object field (6), in which at least one portion of the object (2) to be investigated can be arranged, in an image field. An EUV (Extreme Ultraviolet) light source (3) is used to illuminate the object field (6) with illumination and imaging light (4). The image field is detected by a spatially resolving detection device. A structure generator (13) of the metrology system is configured in such away that the object (6), in a structure mode of the metrology system, is illuminated by spatially structured illumination and imaging light (4). The result is a metrology system, with which even a detection of poorly formed defects, in particular flat defect elevations in the range of few nm, is reliably possible.
    • 用于调查对象的计量系统(2)具有成像光学系统,用于成像对象场(6),其中待调查物体(2)的至少一部分可以被布置在图像场中。 EUV(极紫外)光源(3)用于照明和成像光(4)照射物场(6)。 图像场由空间分辨检测装置检测。 测量系统的结构发生器(13)被构造成使得在计量系统的结构模式中的对象(6)被空间结构化的照明和成像光(4)照亮。 结果是一个计量系统,甚至可以检测到形成不良形状的缺陷,特别是在几nm范围内的平坦缺陷高度。
    • 6. 发明申请
    • VERFAHREN ZUR MASKENINSPEKTION SOWIE MASKENINSPEKTIONSANLAGE
    • 方法掩模检查和掩模检查系统
    • WO2012079723A1
    • 2012-06-21
    • PCT/EP2011/006171
    • 2011-12-08
    • CARL ZEISS SMT GMBHCARL ZEISS AGFELDMANN, HeikoTOTZECK, Michael
    • FELDMANN, HeikoTOTZECK, Michael
    • G03F1/84G03F1/00
    • H04N7/18G03F1/84
    • Die Erfindung betrifft ein Verfahren zur Maskeninspektion sowie eine Maskeninspektionsanlage. Bei einem erfindungsgemässen Verfahren beleuchtet ein Beleuchtungssystem (210, 310, 410, 510) eine Maske (230, 330, 430, 530) mit einem Beleuchtungs-Strahlbüschel (215, 315, 415, 515), und diese Maske (230, 330, 430, 530) wird mit einem Beobachtungs-Strahlbüschel (225, 325, 425, 525) beobachtet, welches auf eine Sensoranordnung (240, 340, 440, 540) gelenkt wird, wobei das auf die Sensoranordnung (240, 340, 440, 540) auftreffende Licht zur Überprüfung des Abbildungseffektes der Maske (230, 330, 430, 530) ausgewertet wird. Das Beleuchtungssystem (210, 310, 410, 510) erzeugt auf der Maske (230, 330, 430, 530) einen beugungsbegrenzten Lichtfleck, wobei bei der Auswertung des auf die Sensoranordnung (240, 340, 440, 540) auftreffenden Lichtes ein endlicher Anteil des unter Erzeugung des Beobach- tungs-Strahlbüschels (225, 325, 425, 525) von der Maske (230, 330, 430, 530) ausgehenden Lichtes außer Betracht bleibt.
    • 本发明涉及一种用于掩模检查的方法,以及一个掩模检查系统。 在本发明中,照明系统(210,310,410,510)的照明的掩模(230,330,430,530)具有照明光束束(215,315,415,515),并且该掩模(230,330的过程中, 430,530)与观察光束(225,325,425,525)中观察到,其(在传感器阵列240,340,440,540)被引导反应,所述(传感器阵列240,340,440,540上 )为所述掩模的画面效果验证的入射光(230,330,430,530)进行评价。 形成在掩模(230,330,430,530)的光的衍射极限的光点,该照明系统(210,310,410,510),其中,入射在所述传感器装置的评估(240,340,440,540)的光的有限部分 掩模的下观察桐油束束(225,325,425,525)的产生(230,330,430,530)的出射光不被考虑。
    • 10. 发明申请
    • OPTICAL DIFFRACTION COMPONENT FOR SUPPRESSING AT LEAST ONE TARGET WAVELENGTH BY DESTRUCTIVE INTERFERENCE
    • WO2020148277A1
    • 2020-07-23
    • PCT/EP2020/050809
    • 2020-01-14
    • CARL ZEISS SMT GMBH
    • FELDMANN, HeikoBOLSINGER, ValentinVAN DRENT, William PeterBENSCHOP, Jozef Petrus Henricus
    • G03F7/20G02B5/18
    • An optical diffraction component (60) serves for suppressing at least one target wavelength by destructive interference. The optical diffraction component (60) has at least three diffraction structure levels (N 1 , N 2 , N 3 , N 4 ). The diffraction structure levels (N 1 , N 2 , N 3 , N 4 ) are assignable to at least two diffraction structure groups. A first of the diffraction structure groups (35) serves for suppressing a first target wavelength λ 1 . A second of the diffraction structure groups serves for suppressing a second target wavelength λ 2 . For the two target wavelengths λ 1 and λ 2 it holds true that: (λ 1 -λ 2 ) 2 / (λ 1 + λ 2 ) 2 1 to N 4 ) can be described as a superimposition of two binary diffraction structure groups. Boundary regions (N 3 / N 1 , N 2 / N 4 , N 4 /N 3 , N 1 /N 2 ) between adjacent surface sections of each of the binary diffraction structure groups have a linear course and are superimposed on one another at most along sections 1 of the linear course. In one variant of the optical diffraction component, the arrangement of the diffraction structures is such that a wavelength range around a first target wavelength λ 1 in the infrared wavelength range, which first target wavelength is diffracted by a periodic grating structure profile, has radiation components having at least three different phases which interfere with one another destructively. The diffraction structure levels have a neutral diffraction structure level, a positive diffraction structure level and a negative diffraction structure level. The result is an optical diffraction component whose possibilities for use are extended in particular for stray light suppression.