会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • OPTICAL SYSTEM, IN PARTICULAR FOR A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS
    • 光学系统,特别是用于微型投影曝光设备
    • WO2018007081A1
    • 2018-01-11
    • PCT/EP2017/063715
    • 2017-06-06
    • CARL ZEISS SMT GMBHENKISCH, HartmutSCHICKETANZ, ThomasKALISKY, MatusDIER, Oliver
    • ENKISCH, HartmutSCHICKETANZ, ThomasKALISKY, MatusDIER, Oliver
    • G03F7/20G21K1/06
    • The invention relates to an optical system, in particular for a microlithographic projection exposure apparatus, with at least one mirror (200) which has an optically effective surface and, for electromagnetic radiation of a predefined operating wavelength impinging on the optically effective surface at an angle of incidence of at least 65° relative to the respective surface normal, has a reflectivity of at least 0.5, wherein the mirror has a reflection layer (210) and a compensation layer (220) which is arranged above this reflection layer (210) in the direction of the optically effective surface, wherein the compensation layer (220), for an intensity distribution generated in a pupil plane or a field plane of the optical system during operation thereof, reduces the difference between the maximum and the minimum intensity value by at least 20% compared to an analogous structure without the compensation layer (220).
    • 本发明涉及一种光学系统,特别是用于微光刻投影曝光装置的光学系统,其具有至少一个反射镜(200),该反射镜具有光学有效表面,并且对于预定工作波长入射的电磁辐射 以至少65°的入射角在光学有效表面上; 相对于相应的表面法线具有至少0.5的反射率,其中该反射镜具有反射层(210)和补偿层(220),该补偿层布置在该反射层(210)上方的光学有效表面 ,其中对于在其操作期间在光学系统的光瞳平面或场平面中产生的强度分布,补偿层(220)将最大强度值与最小强度值之间的差减小至少20%,与类似 结构没有补偿层(220)。
    • 2. 发明申请
    • REFLEKTIVES OPTISCHES ELEMENT, SOWIE OPTISCHES SYSTEM EINER MIKROLITHOGRAPHISCHEN PROJEKTIONSBELICHTUNGSANLAGE
    • 反射光学元件,以及微光刻投射曝光设备的光学系统
    • WO2015075214A1
    • 2015-05-28
    • PCT/EP2014/075356
    • 2014-11-24
    • CARL ZEISS SMT GMBHENKISCH, HartmutPAUL, Hans-JochenSCHICKETANZ, ThomasDIER, OliverWEBER, JörnGRASSE, ChristianWINTER, RalfSTROBEL, Sebastian
    • ENKISCH, HartmutPAUL, Hans-JochenSCHICKETANZ, ThomasDIER, OliverWEBER, JörnGRASSE, ChristianWINTER, RalfSTROBEL, Sebastian
    • G03F7/20G21K1/06
    • G03F7/7015G02B5/0875G02B5/0891G03F7/70316G21K1/062
    • Die vorliegende Erfindung betrifft ein reflektives optisches Element sowie ein optisches System einer mikrolithographischen Projektionsbelichtungsanlage. Ein reflektives optisches Element weist ein Substrat (52) und ein auf diesem Substrat angeordnetes Viellagensystem (51) auf, wobei das Viellagensystem (51) eine Mehrzahl von Teilstapeln aus jeweils einer ersten Lage (54) eines ersten Materials und wenigstens einer zweiten Lage (55) eines zweiten Materials aufweist, wobei sich das erste Material und das zweite Material im Wert des Realteils des Brechungsindex bei einer Arbeitswellenlänge des reflektiven optischen Elements (50) voneinander unterscheiden, wobei jeder dieser Teilstapel (53) eine Teilstapeldicke (D i ) und ein Lagendickenverhältnis (Γ i ) aufweist, wobei das Lagendickenverhältnis (Γ i ) als Quotient der Dicke der jeweiligen ersten Lage (54) und der Teilstapeldicke (D i ) definiert ist, wobei in einem ersten Abschnitt des Viellagensystems (51) für wenigstens eine der beiden Größen Teilstapeldicke (D i ) und Lagendickenverhältnis (Γ i ) die mittlere quadratische Abweichung vom jeweiligen Mittelwert um wenigstens 10% kleiner ist als in einem zweiten Abschnitt des Viellagensystems (51); und wobei das reflektive optische Element (50) eine Reflektivität (R) aufweist, deren Wellenlängenabhängigkeit in einem Wellenlängenintervall von Δλ = 0.5nm einen PV-Wert kleiner als 0.25 besitzt, wobei der PV-Wert definiert ist als PV = (R max_rel - R min_rel )/R max_abs , wobei R max_rel den maximalen Reflektivitätswert in diesem Wellenlängenintervall Δλ, R min_rel den minimalen Reflektivitätswert in diesem Wellenlängenintervall Δλ und R max_abs den absolut maximalen Reflektivitätswert bezeichnen.
    • 本发明涉及一种反射光学元件和微光刻投射曝光设备的光学系统。 一种反射光学元件包括基底(52)和设置在阀所述衬底的多层系统(51),所述多层系统(51)包括多个亚电池堆的每个包括第一材料的第一层(54)和至少一个第二层(55 )第二材料,其中所述第一材料和在所述反射光学元件的工作波长的折射率的实数部分的值的第二材料(50)彼此不同,每个所述子叠层(53)(一个局部堆叠厚度(DI)和一个层厚度比 γI),其中所述片材厚度之比(γI)被定义为相应的第一层(54)和部件层叠厚度(DI),的厚度的比率,其中在所述多层系统(51),用于所述两个尺寸部分堆叠厚度中的至少一个的第一部分(DI) 和位置厚度比(γI),根均从各自的均方差的至少10%是小 比在多层系统(51)的第二部分; 并且其中,所述反射光学元件(50)具有一个反射率(R),其波长依赖性在波长间隔Δλ= 0.5nm的PV值具有小于0.25,其中,所述PV值被定义为PV =(Rmax_rel - Rmin_rel) / Rmax_abs其中Rmax_rel在该波长间隔Δλ,Rmin_rel最大反射率表示在该波长间隔Δλ最小反射率和Rmax_abs绝对最大反射率。
    • 4. 发明申请
    • METHOD FOR CORRECTING THE SURFACE FORM OF A MIRROR
    • 校正镜子表面形式的方法
    • WO2012123240A1
    • 2012-09-20
    • PCT/EP2012/053234
    • 2012-02-27
    • CARL ZEISS SMT GMBHMÜLLER, JürgenSCHICKETANZ, ThomasEHM, Dirk Heinrich
    • MÜLLER, JürgenSCHICKETANZ, ThomasEHM, Dirk Heinrich
    • G02B5/10G21K1/06
    • G02B5/0816B82Y10/00G02B5/0891G02B27/0025G03F7/70166G03F7/70191G03F7/70233G03F7/70308G03F7/70958G21K1/062
    • The invention relates to a method for correcting a surface form of a mirror (19 for reflecting radiation having an operating wavelength in the range of 5-30 nm, said mirror comprising a substrate (3). The method comprises at least the following steps: - applying a correction layer (13) having a layer thickness variation (21) for correcting the surface form of the mirror (1), - applying a first group (19) of layers to the correction layer (13), wherein the first group (19) of layers comprises a plurality of first (9) and second (11) layers arranged alternately one above another, wherein the first layers (9) have a refractive index for radiation having the operating wavelength which is greater than the refractive index of the second layers (11) for radiation having the operating wavelength. In this case, applying the correction layer (13) is effected by the following steps: - introducing the mirror (1) into an atmosphere comprising a reaction gas (15), - applying a correction radiation (17) having a location-dependent radiation energy density to the mirror (1, 201, 301, 401), such that a correction layer (13) having a location-dependent layer thickness variation (21) grows on the irradiated surface of the mirror (1).
    • 本发明涉及一种用于校正反射镜(19)的表面形式的方法,用于反射具有5-30nm范围内的工作波长的辐射,所述反射镜包括基底(3),该方法至少包括以下步骤: - 施加具有用于校正反射镜(1)的表面形式的层厚度变化(21)的校正层(13), - 向校正层(13)施加第一组层(19),其中第一组 (19)层包括交替地彼此交替布置的多个第一(9)和第二(11)层,其中第一层(9)具有用于辐射的折射率,其工作波长大于 用于辐射的第二层(11)具有工作波长,在这种情况下,通过以下步骤施加校正层(13): - 将反射镜(1)引入包含反应气体(15)的气氛中, - 应用校正辐射( 17),其具有与所述反射镜(1,201,301,401)相对的位置相关的辐射能量密度,使得具有位置相关层厚度变化(21)的校正层(13)在所述镜的照射表面上生长 (1)。
    • 5. 发明申请
    • CATADIOPTRIC PROJECTION OBJECTIVE COMPRISING DEFLECTION MIRRORS AND PROJECTION EXPOSURE METHOD
    • 包含反射镜和投影曝光方法的目标投影目标
    • WO2011038840A1
    • 2011-04-07
    • PCT/EP2010/005683
    • 2010-09-16
    • CARL ZEISS SMT GMBHSCHICKETANZ, ThomasGRUNER, Toralf
    • SCHICKETANZ, ThomasGRUNER, Toralf
    • G03F7/20G02B17/08
    • G02B17/0892G02B13/14G02B17/08G02B17/0896G03F1/26G03F7/702G03F7/70225G03F7/70258G03F7/70266G03F7/70275G03F7/70308G03F7/70316G03F7/70441G03F7/70791
    • A catadioptric projection objective has a multiplicity of lenses and at least one concave mirror (CM), and also two deflection mirrors (FM1, FM2) in order to separate the partial beam path running from the object field to the concave mirror from the partial beam path running from the concave mirror to the image field. The deflection mirrors are tilted relative to the optical axis (OA) of the projection objective about tilting axes running parallel to a first direction (x-direction). The first deflection mirror is arranged in optical proximity to a first field plane and the second deflection mirror is arranged in optical proximity to a second field plane, which is optically conjugate with respect to the first field plane. An optical imaging system arranged between said field planes has an imaging scale of close to -1 in the first direction. Provision is made of a displacement device (DISX) for the synchronous displacement of the deflection mirrors (FM1, FM1) parallel to the first direction between a first position and a second position, which is offset by a displacement distance relative to the first position. A projection radiation beam running through the projection objective is reflected in first reflection regions in the first position of the deflection mirrors and in second reflection regions in the second position of the deflection mirrors, said second reflection regions being laterally offset by the displacement distance parallel to the first direction relative to the first reflection regions. The deflection mirrors have different local distributions of their reflection properties in the first and the second reflection regions. An active manipulation of field effects, e.g. of the field uniformity, or an active manipulation of the wavefront thereby becomes possible.
    • 反射折射投射物镜具有多个透镜和至少一个凹面镜(CM),以及两个偏转镜(FM1,FM2),以将从物场延伸的部分光束路径与部分光束分离 路径从凹面镜运行到图像场。 偏转镜相对于投影物镜的光轴(OA)相对于平行于第一方向(x方向)延伸的倾斜轴线倾斜。 第一偏转镜被布置成光接近第一场平面,并且第二偏转镜布置成光学接近于相对于第一场平面光学共轭的第二场平面。 布置在所述场平面之间的光学成像系统具有在第一方向上接近-1的成像刻度。 提供了一种位移装置(DISX),用于在第一位置和第二位置之间平行于第一方向的偏转镜(FM1,FM1)的同步位移,第一位置和第二位置相对于第一位置偏移位移距离。 穿过投影物镜的投影辐射束在偏转镜的第一位置的第一反射区域和偏转镜的第二位置的第二反射区域中被反射,所述第二反射区域被横向偏移平行于 相对于第一反射区域的第一方向。 偏转镜在第一和第二反射区域中具有不同的其反射特性的局部分布。 主动操纵场效应,例如 的场均匀性或波前的主动操作变得可能。
    • 9. 发明申请
    • IMAGING CATOPTRIC EUV PROJECTION OPTICAL UNIT
    • 成像光电EUV投影光学单元
    • WO2013045597A1
    • 2013-04-04
    • PCT/EP2012/069158
    • 2012-09-28
    • CARL ZEISS SMT GMBHRUOFF, JohannesSCHICKETANZ, Thomas
    • RUOFF, JohannesSCHICKETANZ, Thomas
    • G02B17/06G03F7/20
    • G03F7/70233G02B17/06G02B17/0663G03F7/7015G03F7/70566
    • An imaging catoptric optical unit (7) has at least four mirrors (Ml to M4), which image an object field (4) in an object plane (5) into an image field (8) in an image plane (9). A first chief ray plane (yz) of the optical unit is prescribed by propagation of a chief ray (16) of a central object field point during the reflection at one of the mirrors (Ml). A second chief ray plane (xz) of the optical unit is prescribed by propagation of the chief ray (16) of the central object field point during the reflection at one of the other mirrors (M3, M4). The two chief ray planes (yz, xz) include an angle that differs from 0. In an alternative or additional aspect, the imaging optical unit (7), considered via the image field (8), has a maximum diattenuation (D) of 10% or a diattenuation that prefers a tangential polarization of the imaging light for a respectively considered illumination angle. The result of both aspects is an imaging optical unit in which bothersome polarization influences are reduced during the reflection of imaging light at the mirrors of the imaging optical unit.
    • 成像反射光学单元(7)具有至少四个镜(M1至M4),其将物平面(5)中的物场(4)成像为图像平面(9)中的图像场(8)。 光学单元的第一主射线平面(yz)由反射镜(M1)之一的反射期间的中心物场点的主射线(16)的传播来规定。 光学单元的第二主光线平面(xz)是通过在其它反射镜(M3,M4)之一的反射期间中心物场点的主射线(16)的传播来规定的。 两个主射线平面(yz,xz)包括与0不同的角度。在替代或另外的方面,通过图像场(8)考虑的成像光学单元(7)具有最大减光度(D) 10%或偏心,其偏好对于分别考虑的照明角度的成像光的切向极化。 两个方面的结果是成像光学单元,其中在成像光学单元的反射镜的成像光的反射期间,麻烦的偏振影响减小。
    • 10. 发明申请
    • EUV MIRROR AND OPTICAL SYSTEM COMPRISING EUV MIRROR
    • EUV镜子和包含EUV镜子的光学系统
    • WO2014108256A1
    • 2014-07-17
    • PCT/EP2013/075830
    • 2013-12-06
    • CARL ZEISS SMT GMBH
    • SCHICKETANZ, ThomasPAUL, Hans-JochenZACZEK, Christoph
    • G21K1/06
    • G03F7/70316B82Y10/00G02B5/0816G02B5/0891G03F7/702G03F7/70958G21K1/062G21K2201/067
    • An EUV mirror comprises a substrate and a multilayer arrangement applied on the substrate, which multilayer arrangement has a reflective effect for radiation having a wavelength λ from the extreme ultraviolet range (EUV) and comprises a multiplicity of layer pairs having alternating layers comprising a high refractive index layer material and a low refractive index layer material. The multilayer arrangement comprises: a periodic first layer group (LG1) having a first number N1 > 1 of first layer pairs, which are arranged in the vicinity of a radiation entrance side of the multilayer arrangement and have a first period thickness P1; a periodic second layer group (LG2) having a second number N2 > 1 of second layer pairs, which are arranged between the first layer group and the substrate and have a second period thickness P2; and a third layer group (LG3) having a third number N3 of third layer pairs, which are arranged between the first layer group and the second layer group. The first number N1 is greater than the second number N2. The third layer group has an mean third period thickness P3 which deviates from an average period thickness P M = (P1 + P2)/2 by a period thickness difference ΔΡ, wherein the period thickness difference ΔΡ substantially corresponds to the quotient of the optical layer thickness (λ/4) of a quarter-wave layer and the product of the third number N3 and cos(AOI M ), wherein AOI M is the mean angle of incidence for which the multilayer arrangement is designed.
    • EUV反射镜包括施加在基板上的基板和多层布置,所述多层布置对于具有来自极紫外范围(EUV)的波长λ的辐射具有反射效应,并且包括具有包括高折射率的交替层的多个层对 折射率层材料和低折射率层材料。 多层布置包括:布置在多层布置的辐射入口侧附近并具有第一周期厚度P1的第一层对的第一数量N1> 1的周期性第一层组(LG1); 具有第二层对的第二数量N2> 1的周期性第二层组(LG2),它们布置在第一层组和衬底之间并具有第二周期厚度P2; 以及配置在第一层组和第二层组之间的具有第三层对的第三数量N3的第三层组(LG3)。 第一数量N1大于第二数量N2。 第三层组具有平均第三周期厚度P3,其平均周期厚度PM =(P1 + P2)/ 2偏离周期厚度差Dgr& Rgr,其中周期厚度差Dgr& Rgr; 基本上对应于四分之一波长层的光学层厚度(λ/ 4)和第三数量N 3和cos(AOIM)的乘积的商,其中AOIM是设计多层布置的平均入射角 。