会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • Sputtered Spring Films With Low Stress Anisotropy
    • 具有低应力各向异性的溅射弹簧膜
    • US20070117234A1
    • 2007-05-24
    • US11611823
    • 2006-12-15
    • David ForkScott SolbergKarl Littau
    • David ForkScott SolbergKarl Littau
    • H01L21/00
    • G01R1/06733C23C14/14C23C14/3492C23C14/35G01R1/06727G01R1/06744G01R3/00H01L21/67167H01L21/67207H05K3/4092Y10T428/24
    • Methods are disclosed for fabricating spring structures that minimize helical twisting by reducing or eliminating stress anisotropy in the thin films from which the springs are formed through manipulation of the fabrication process parameters and/or spring material compositions. In one embodiment, isotropic internal stress is achieved by manipulating the fabrication parameters (i.e., temperature, pressure, and electrical bias) during spring material film formation to generate the tensile or compressive stress at the saturation point of the spring material. Methods are also disclosed for tuning the saturation point through the use of high temperature or the incorporation of softening metals. In other embodiments, isotropic internal stress is generated through randomized deposition (e.g., pressure homogenization) or directed deposition techniques (e.g., biased sputtering, pulse sputtering, or long throw sputtering). Cluster tools are used to separate the deposition of release and spring materials.
    • 公开了用于制造弹簧结构的方法,其通过减少或消除通过操纵制造工艺参数和/或弹簧材料组成形成弹簧的薄膜中的应力各向异性来最小化螺旋扭转。 在一个实施例中,通过在弹簧材料膜形成期间操纵制造参数(即,温度,压力和电偏压)来实现各向同性内部应力,以在弹簧材料的饱和点处产生拉伸或压缩应力。 还公开了通过使用高温或软化金属的引入来调节饱和点的方法。 在其他实施例中,通过随机沉积(例如,压力均化)或定向沉积技术(例如,偏置溅射,脉冲溅射或长投射溅射)产生各向同性的内部应力。 集群工具用于分离释放和弹簧材料的沉积。
    • 8. 发明申请
    • Piezoelectric diaphragm structure with outer edge electrode
    • 压电膜片结构,外缘电极
    • US20050134153A1
    • 2005-06-23
    • US10739478
    • 2003-12-18
    • John BachellerieSteven BuhlerJohn FitchMeng LeanKarl Littau
    • John BachellerieSteven BuhlerJohn FitchMeng LeanKarl Littau
    • H01L41/047H01L41/09
    • H01L41/0973H01L41/047
    • A multi-electrode piezoelectric diaphragm structure includes a diaphragm, piezoelectric material located on the diaphragm, which is defined as having a first area, and a second area. The first area of the piezoelectric is poled in a first direction, and the second area of the piezoelectric is poled in a second direction. The poled first direction is in a Z-axis of the piezoelectric and the poled second direction is in a Radial axis of the piezoelectric. A first electrode is positioned in the first area, on the first surface, of the piezoelectric. A second electrode is positioned in the second area, on the first surface, of the piezoelectric. A third electrode is located on a second surface of the piezoelectric. The application of voltages to the first, second and third electrodes generates electric fields in the piezoelectric material resulting in actuation of the piezoelectric material, or the application of pressure or strain to the diaphragm generates electric potentials at the first, second and third electrodes.
    • 多电极压电膜结构包括隔膜,位于膜片上的压电材料,其被定义为具有第一区域,第二区域。 压电体的第一区域沿第一方向极化,并且压电体的第二区域在第二方向上极化。 极化的第一方向在压电体的Z轴上,并且极化的第二方向处于压电体的径向轴线。 第一电极位于压电体的第一表面的第一区域中。 第二电极位于压电体的第一表面的第二区域中。 第三电极位于压电体的第二表面上。 施加电压到第一,第二和第三电极在压电材料中产生电场,导致压电材料的致动,或施加压力或应变到隔膜在第一,第二和第三电极处产生电位。
    • 10. 发明申请
    • Sputtered spring films with low stress anisotropy
    • 具有低应力各向异性的溅射弹簧膜
    • US20050159002A1
    • 2005-07-21
    • US11029618
    • 2005-01-05
    • David ForkScott SolbergKarl Littau
    • David ForkScott SolbergKarl Littau
    • B81B3/00B81C1/00G01R1/067G01R3/00H05K3/40H04R17/00H01L21/302H01L21/461
    • G01R1/06733C23C14/14C23C14/3492C23C14/35G01R1/06727G01R1/06744G01R3/00H01L21/67167H01L21/67207H05K3/4092Y10T428/24
    • Methods are disclosed for fabricating spring structures that minimize helical twisting by reducing or eliminating stress anisotropy in the thin films from which the springs are formed through manipulation of the fabrication process parameters and/or spring material compositions. In one embodiment, isotropic internal stress is achieved by manipulating the fabrication parameters (i.e., temperature, pressure, and electrical bias) during spring material film formation to generate the tensile or compressive stress at the saturation point of the spring material. Methods are also disclosed for tuning the saturation point through the use of high temperature or the incorporation of softening metals. In other embodiments, isotropic internal stress is generated through randomized deposition (e.g., pressure homogenization) or directed deposition techniques (e.g., biased sputtering, pulse sputtering, or long throw sputtering). Cluster tools are used to separate the deposition of release and spring materials.
    • 公开了用于制造弹簧结构的方法,其通过减少或消除通过操纵制造工艺参数和/或弹簧材料组成形成弹簧的薄膜中的应力各向异性来最小化螺旋扭转。 在一个实施例中,通过在弹簧材料膜形成期间操纵制造参数(即,温度,压力和电偏压)来实现各向同性内部应力,以在弹簧材料的饱和点处产生拉伸或压缩应力。 还公开了通过使用高温或软化金属的引入来调节饱和点的方法。 在其他实施例中,通过随机沉积(例如,压力均化)或定向沉积技术(例如,偏置溅射,脉冲溅射或长投射溅射)产生各向同性的内部应力。 集群工具用于分离释放和弹簧材料的沉积。