会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明申请
    • Piezoelectric diaphragm structure with outer edge electrode
    • 压电膜片结构,外缘电极
    • US20050134153A1
    • 2005-06-23
    • US10739478
    • 2003-12-18
    • John BachellerieSteven BuhlerJohn FitchMeng LeanKarl Littau
    • John BachellerieSteven BuhlerJohn FitchMeng LeanKarl Littau
    • H01L41/047H01L41/09
    • H01L41/0973H01L41/047
    • A multi-electrode piezoelectric diaphragm structure includes a diaphragm, piezoelectric material located on the diaphragm, which is defined as having a first area, and a second area. The first area of the piezoelectric is poled in a first direction, and the second area of the piezoelectric is poled in a second direction. The poled first direction is in a Z-axis of the piezoelectric and the poled second direction is in a Radial axis of the piezoelectric. A first electrode is positioned in the first area, on the first surface, of the piezoelectric. A second electrode is positioned in the second area, on the first surface, of the piezoelectric. A third electrode is located on a second surface of the piezoelectric. The application of voltages to the first, second and third electrodes generates electric fields in the piezoelectric material resulting in actuation of the piezoelectric material, or the application of pressure or strain to the diaphragm generates electric potentials at the first, second and third electrodes.
    • 多电极压电膜结构包括隔膜,位于膜片上的压电材料,其被定义为具有第一区域,第二区域。 压电体的第一区域沿第一方向极化,并且压电体的第二区域在第二方向上极化。 极化的第一方向在压电体的Z轴上,并且极化的第二方向处于压电体的径向轴线。 第一电极位于压电体的第一表面的第一区域中。 第二电极位于压电体的第一表面的第二区域中。 第三电极位于压电体的第二表面上。 施加电压到第一,第二和第三电极在压电材料中产生电场,导致压电材料的致动,或施加压力或应变到隔膜在第一,第二和第三电极处产生电位。
    • 10. 发明申请
    • Radially poled piezoelectric diaphragm structures
    • 径向极化压电隔膜结构
    • US20050134152A1
    • 2005-06-23
    • US10740292
    • 2003-12-18
    • Meng LeanSteven BuhlerJohn FitchKarl Littau
    • Meng LeanSteven BuhlerJohn FitchKarl Littau
    • H01L41/047H01L41/09
    • H01L41/0973H01L41/047
    • In accordance with one embodiment of the present application, a piezoelectric diaphragm structure includes a diaphragm, with a piezoelectric material located on the diaphragm. The piezoelectric material is being poled in a radial direction to the piezoelectric material, wherein the poling direction is in-plane with the piezoelectric material. An inter-digitated electrode grid is positioned on a first surface of the piezoelectric material, the inter-digitated electrode grid including a plurality of electrodes configured to selectively receive positive and negative voltage. The application of the positive and negative voltages generate electric fields in the piezoelectric material, at least a portion of which are in-plane with the piezoelectric material, resulting in an actuation of the piezoelectric material, causing a length change of the piezoelectric material in the Radial direction. In accordance with another embodiment of the present application, provided is a method of actuating a piezoelectric diaphragm structure, including poling a piezoelectric material in a radial direction of the piezoelectric material, wherein the poling direction is in-plane with the piezoelectric material. The piezoelectric material is located in operative contact with the diaphragm, and an electrode arrangement located on a surface of the piezoelectric material is selectively supplied with voltages generating electric fields. The generated electric fields are at least partially in the same plane as the poling direction, resulting in a d33 mode of actuation of the piezoelectric material, causing a length change of the piezoelectric material in the Radial direction.
    • 根据本申请的一个实施例,压电振膜结构包括隔膜,压电材料位于隔膜上。 压电材料在压电材料的径向方向上被极化,其中极化方向与压电材料成平面。 数字化电极栅格位于压电材料的第一表面上,数字化电极栅格包括多个电极,其被配置为选择性地接收正电压和负电压。 正压和负电压的施加在压电材料中产生电场,其压电材料的至少一部分与压电材料成平面,导致压电材料的致动,导致压电材料的长度变化 径向。 根据本申请的另一实施例,提供了一种致动压电膜结构的方法,包括在压电材料的径向方向上极化压电材料,其中极化方向与压电材料成平面。 压电材料位于与隔膜有效接触的位置,并且位于压电材料表面上的电极装置被选择性地供给产生电场的电压。 产生的电场至少部分地在与极化方向相同的平面中,导致压电材料的致动模式,导致压电材料在径向方向上的长度变化。