会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method for forming a low impurity diffusion polysilicon layer
    • 形成低杂质扩散多晶硅层的方法
    • US5767004A
    • 1998-06-16
    • US635992
    • 1996-04-22
    • Narayanan BalasubramanianChing Win KongChuck Jang
    • Narayanan BalasubramanianChing Win KongChuck Jang
    • H01L21/28H01L21/3205H01L29/49
    • H01L21/28061H01L21/32055H01L29/4925H01L29/4933
    • A method for forming within an integrated circuit a low impurity diffusion polysilicon layer. Formed upon a semiconductor substrate is an amorphous silicon layer. Formed also upon the semiconductor substrate and contacting the amorphous silicon layer is a polysilicon layer. The amorphous silicon layer and the polysilicon layer are then simultaneously annealed to form a low impurity diffusion polysilicon layer. The low impurity diffusion polysilicon layer is a polysilicon multi-layer with grain boundary mis-matched polycrystalline properties. Optionally, a metal silicide layer may be formed upon the amorphous silicon layer and the polysilicon layer either prior to or subsequent to annealing the amorphous silicon layer and the polysilicon layer. The metal silicide layer and low impurity diffusion polysilicon layer may then be patterned to form a polycide gate electrode.
    • 一种在集成电路内形成低杂质扩散多晶硅层的方法。 形成在半导体衬底上的是非晶硅层。 形成在半导体衬底上并与非晶硅层接触的是多晶硅层。 然后,非晶硅层和多晶硅层同时退火以形成低杂质扩散多晶硅层。 低杂质扩散多晶硅层是具有晶界不匹配多晶性质的多晶硅多层。 可选地,在非晶硅层和多晶硅层退火之前或之后,可以在非晶硅层和多晶硅层上形成金属硅化物层。 然后可以对金属硅化物层和低杂质扩散多晶硅层进行构图以形成多晶硅栅极电极。
    • 5. 发明授权
    • Method of fabricating tensile strained layers and compressive strain layers for a CMOS device
    • 制造CMOS器件的拉伸应变层和压应变层的方法
    • US07439165B2
    • 2008-10-21
    • US11100206
    • 2005-04-06
    • Patrick Guo Oiang LoLakshmi Kanta BeraWei Yip LohBalakumar SubramanianNarayanan Balasubramanian
    • Patrick Guo Oiang LoLakshmi Kanta BeraWei Yip LohBalakumar SubramanianNarayanan Balasubramanian
    • H01L21/22H01L21/38
    • H01L21/823807H01L21/823878H01L29/1054H01L29/66477H01L29/66742H01L29/78H01L29/78687
    • A process for forming both tensile and compressive strained silicon layers to accommodate channel regions of MOSFET or CMOS devices has been developed. After formation of shallow trench isolation structures as well as application of high temperature oxidation and activation procedures, the fabrication sequences used to obtain the strained silicon layers is initiated. A semiconductor alloy layer is deposited followed by an oxidation procedure used to segregate a germanium component from the overlying semiconductor alloy layer into an underlying single crystalline silicon body. The level of germanium segregated into the underlying single crystalline silicon body determines the level of strain, which is in tensile state of a subsequently selectively grown silicon layer. A second embodiment of this invention features the thinning of a portion of the semiconductor alloy layer prior to the oxidation procedure allowing a lower level of germanium to be segregated into a first underlying portion of the underlying single crystalline silicon body, while during the same oxidation procedure a second portion of the underlying single crystalline silicon body receives a higher level of germanium segregation. So the subsequently deposited silicon-germanium layer, although the same process and thickness, can be strained in different states (tensile or compressive) and levels, depending different underlying portions' germanium concentration.
    • 已经开发了用于形成拉伸和压缩应变硅层以适应MOSFET或CMOS器件的沟道区的工艺。 在形成浅沟槽隔离结构以及施加高温氧化和激活程序之后,开始用于获得应变硅层的制造顺序。 沉积半导体合金层,然后沉积氧化工序,将锗组分从上覆的半导体合金层分离成下面的单晶硅体。 分离到下面的单晶硅体中的锗的水平决定了随后选择性生长的硅层的拉伸状态的应变水平。 本发明的第二个实施方案的特征在于在氧化过程之前使半导体合金层的一部分变薄,允许较低水平的锗分离成下面的单晶硅体的第一下面部分,同时在相同的氧化过程 底层单晶硅体的第二部分接受较高水平的锗分离。 因此,随后沉积的硅 - 锗层,尽管相同的工艺和厚度,可以根据不同的下层部分的锗浓度在不同的状态(拉伸或压缩)和水平应变。
    • 6. 发明申请
    • Fully salicided (FUSA) MOSFET structure
    • 完全水化(FUSA)MOSFET结构
    • US20060199321A1
    • 2006-09-07
    • US11071768
    • 2005-03-03
    • Patrick Guo LoWei LohRanganathan NagarajanNarayanan Balasubramanian
    • Patrick Guo LoWei LohRanganathan NagarajanNarayanan Balasubramanian
    • H01L21/336
    • H01L29/78621H01L29/458H01L29/4908H01L29/66643H01L29/66772H01L29/78636
    • A method is described to form a MOSFET with a fully silicided gate electrode and fully silicided, raised S/D elements that are nearly coplanar to allow a wider process margin when forming contacts to silicided regions. An insulator block layer is formed over STI regions and a conformal silicidation stop layer such as Ti/TiN is disposed on the insulator block layer and active region. A polysilicon layer is deposited on the silicidation stop layer and is planarized by a CMP process to form raised S/D elements. An oxide hardmask on the gate electrode is removed to produce a slight recess between the spacers. A silicidation process yields a gate electrode and raised S/D elements comprised of NiSi. Optionally, a recess is formed in the substrate between an insulator block mask and spacer and a Schottky barrier is used instead of a silicidation stop layer to form a Schottky Barrier MOSFET.
    • 描述了一种形成具有完全硅化栅电极和完全硅化的凸起S / D元件的MOSFET,其几乎共面以在形成与硅化物区域的接触时允许更宽的工艺裕度。 在STI区域上形成绝缘体阻挡层,并且在绝缘体阻挡层和有源区上设置诸如Ti / TiN的共形硅化停止层。 多晶硅层沉积在硅化终止层上,并通过CMP工艺平坦化以形成凸起的S / D元件。 去除栅电极上的氧化物硬掩模以在间隔件之间产生轻微的凹陷。 硅化工艺产生栅电极和由NiSi组成的升高的S / D元件。 可选地,在绝缘体块掩模和间隔物之间​​的衬底中形成凹部,并且使用肖特基势垒代替硅化阻挡层以形成肖特基势垒MOSFET。
    • 8. 发明授权
    • Fully salicided (FUCA) MOSFET structure
    • 完全水化(FUSA)MOSFET结构
    • US07682914B2
    • 2010-03-23
    • US11981496
    • 2007-10-30
    • Patrick Guo Qiang LoWei Yip LohRanganathan NagarajanNarayanan Balasubramanian
    • Patrick Guo Qiang LoWei Yip LohRanganathan NagarajanNarayanan Balasubramanian
    • H01L21/336
    • H01L29/78621H01L29/458H01L29/4908H01L29/66643H01L29/66772H01L29/78636
    • A method is described to form a MOSFET with a fully silicided gate electrode and fully silicided, raised S/D elements that are nearly coplanar to allow a wider process margin when forming contacts to silicided regions. An insulator block layer is formed over STI regions and a conformal silicidation stop layer such as Ti/TiN is disposed on the insulator block layer and active region. A polysilicon layer is deposited on the silicidation stop layer and is planarized by a CMP process to form raised S/D elements. An oxide hardmask on the gate electrode is removed to produce a slight recess between the spacers. A silicidation process yields a gate electrode and raised S/D elements comprised of NiSi. Optionally, a recess is formed in the substrate between an insulator block mask and spacer and a Schottky barrier is used instead of a silicidation stop layer to form a Schottky Barrier MOSFET.
    • 描述了一种形成具有完全硅化栅电极和完全硅化的凸起S / D元件的MOSFET,该S / D元件几乎共面以在形成与硅化物区域的接触时允许更宽的工艺裕度。 在STI区域上形成绝缘体阻挡层,并且在绝缘体阻挡层和有源区上设置诸如Ti / TiN的共形硅化停止层。 多晶硅层沉积在硅化终止层上,并通过CMP工艺平坦化以形成凸起的S / D元件。 去除栅电极上的氧化物硬掩模以在间隔件之间产生轻微的凹陷。 硅化工艺产生栅电极和由NiSi组成的升高的S / D元件。 可选地,在绝缘体块掩模和间隔物之间​​的衬底中形成凹部,并且使用肖特基势垒代替硅化阻挡层以形成肖特基势垒MOSFET。
    • 9. 发明申请
    • Method of fabricating strained channel devices
    • 应变通道器件的制造方法
    • US20060226483A1
    • 2006-10-12
    • US11100206
    • 2005-04-06
    • Patrick LoLakshmi BeraWei LohBalakumar SubramanianNarayanan Balasubramanian
    • Patrick LoLakshmi BeraWei LohBalakumar SubramanianNarayanan Balasubramanian
    • H01L27/12H01L21/20
    • H01L21/823807H01L21/823878H01L29/1054H01L29/66477H01L29/66742H01L29/78H01L29/78687
    • A process for forming both tensile and compressive strained silicon layers to accommodate channel regions of MOSFET or CMOS devices has been developed. After formation of shallow trench isolation structures as well as application of high temperature oxidation and activation procedures, the fabrication sequences used to obtain the strained silicon layers is initiated. A semiconductor alloy layer is deposited followed by an oxidation procedure used to segregate a germanium component from the overlying semiconductor alloy layer into an underlying single crystalline silicon body. The level of germanium segregated into the underlying single crystalline silicon body determines the level of strain, which is in tensile state of a subsequently selectively grown silicon layer. A second embodiment of this invention features the thinning of a portion of the semiconductor alloy layer prior to the oxidation procedure allowing a lower level of germanium to be segregated into a first underlying portion of the underlying single crystalline silicon body, while during the same oxidation procedure a second portion of the underlying single crystalline silicon body receives a higher level of germanium segregation. So the subsequently deposited silicon-germanium layer, although the same process and thickness, can be strained in different states (tensile or compressive) and levels, depending different underlying portions' germanium concentration.
    • 已经开发了用于形成拉伸和压缩应变硅层以适应MOSFET或CMOS器件的沟道区的工艺。 在形成浅沟槽隔离结构以及施加高温氧化和激活程序之后,开始用于获得应变硅层的制造顺序。 沉积半导体合金层,然后沉积氧化工序,将锗组分从上覆的半导体合金层分离成下面的单晶硅体。 分离到下面的单晶硅体中的锗的水平决定了随后选择性生长的硅层的拉伸状态的应变水平。 本发明的第二个实施方案的特征在于在氧化过程之前使半导体合金层的一部分变薄,允许较低水平的锗分离成下面的单晶硅体的第一下面部分,同时在相同的氧化过程 底层单晶硅体的第二部分接受较高水平的锗分离。 因此,随后沉积的硅 - 锗层,尽管相同的工艺和厚度,可以根据不同的下层部分的锗浓度在不同的状态(拉伸或压缩)和水平应变。