会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of fabricating a field emission device by using carbon nano-tubes
    • 使用碳纳米管制造场致发射器件的方法
    • US6019656A
    • 2000-02-01
    • US145327
    • 1998-09-01
    • Kang Ho ParkWan Soo YunJeong Sook Ha
    • Kang Ho ParkWan Soo YunJeong Sook Ha
    • H01J9/02
    • B82Y10/00H01J9/025Y10S977/842
    • This invention relates to a fabrication method of field emission device by using a carbon nano-tubes and, more particularly, to a fabrication method of field emission device by using the carbon nano-tubes, gathering much attention as a new material, as a field emission tips which have thin and stiff edges so that a threshold voltage required for emitting electron of the field emission device is to be lowered drastically. This invention provides a fabrication method of the field emission device using a thermally and chemically stable carbon nano-tubes, which have very stiff and nano-meter-thick edges, as a field emission tips so that the field emission device using the carbon nano-tubes as the tips, which have an excellent electron beam coherency, can emit electrons at a very low voltage and very stable during a long period.
    • 本发明涉及一种使用碳纳米管的场发射装置的制造方法,更具体地说,涉及使用碳纳米管的场致发射装置的制造方法,作为现场作为新材料而备受关注 具有薄且硬边缘的发射尖端,使得发射场致发射装置的电子所需的阈值电压显着降低。 本发明提供了使用具有非常硬且纳米厚的边缘的热和化学稳定的碳纳米管作为场发射尖端的场发射器件的制造方法,使得使用碳纳米管的场致发射器件, 作为具有优异的电子束相干性的尖端的管可以在非常低的电压下发射电子并且在长时间段内非常稳定。
    • 3. 发明授权
    • Apparatus for detecting nano particle having nano-gap electrode
    • 用于检测具有纳米间隙电极的纳米颗粒的装置
    • US08062596B2
    • 2011-11-22
    • US12810461
    • 2008-11-10
    • Wan Soo YunHyung Ju ParkCho Yeon Lee
    • Wan Soo YunHyung Ju ParkCho Yeon Lee
    • G01N7/00G01N21/00
    • G01N27/3278
    • The present invention relates to a nanoparticle sensor which is capable to identify an existence/nonexistence, a concentration, a size distribution and a component of the nanoparticles using an electrode pair having a separated distance of a nano-gap, in which the nanoparticle sensor includes a unit element configured with a plurality of unit electrodes electrically operated independently from each other and detects the nanoparticles based on the number of the unit electrodes electrically changed due to the nanoparticles captured into the nano-gap. The nanoparticle sensor of the present invention can detect the component, the size, the size distribution and the concentration of the nanoparticles by single measurement, have high reliability and regeneration while reducing a detection time by statistical method via a plurality of electrode pairs having the nano-gap, and detect even very low concentration of nanoparticles.
    • 本发明涉及一种纳米粒子传感器,其能够使用具有分离的纳米间隙的距离的电极对来识别纳米颗粒的存在/不存在,浓度,尺寸分布和组分,其中纳米颗粒传感器包括 单元元件,其配置有彼此独立地电操作的多个单元电极,并且基于由于捕获到纳米间隙中的纳米颗粒而电变化的单位电极的数量来检测纳米颗粒。 本发明的纳米颗粒传感器可以通过单次测量来检测纳米颗粒的组分,尺寸,尺寸分布和浓度,具有高的可靠性和再生能力,同时通过统计方法通过具有纳米尺度的多个电极对减少检测时间 并且检测到甚至非常低浓度的纳米颗粒。
    • 4. 发明申请
    • Quantum Dot Photovoltaic Device and Manufacturing Method Thereof
    • 量子点光伏器件及其制造方法
    • US20110146775A1
    • 2011-06-23
    • US13061297
    • 2009-08-28
    • Kyung Joong KimWoo LeeYong Sung KimYoung Heon KimSeung hui HongWan Soo YunSang Woo Kang
    • Kyung Joong KimWoo LeeYong Sung KimYoung Heon KimSeung hui HongWan Soo YunSang Woo Kang
    • H01L31/0352H01L31/18
    • H01L31/035218H01L31/18
    • The present invention provides a semiconductor based photovoltaic device and a manufacturing method thereof. The semiconductor based photovoltaic device is able to absorb light with a wide band wavelength, and has high photoelectric conversion efficiency since it has high electron-hole pair separation efficiency. More specifically, the method for manufacturing the photovoltaic device comprises the steps of: a) forming a thin semiconductor quantum dot film on a p or n-type semiconductor substrate, wherein the thin semiconductor quantum dot film includes semiconductor quantum dots inside a medium at which the same type of impurities as the semiconductor substrate are doped; b) forming a pore array through partial etching, wherein the pore array penetrates the thin semiconductor quantum dot film; c) depositing a semiconductor in which complementary impurities to the semiconductor substrate are doped on the thin semiconductor quantum dot film at which the pore array is formed; and d) forming sequentially a transparent conductive film and an upper electrode on the semiconductor in which the complementary impurities are doped and forming a lower electrode at a lower portion of the semiconductor substrate.
    • 本发明提供一种基于半导体的光电器件及其制造方法。 基于半导体的光电器件能够吸收宽带波长的光,并且由于具有高的电子 - 空穴对分离效率,因此光电转换效率高。 更具体地说,制造光伏器件的方法包括以下步骤:a)在p型或n型半导体衬底上形成薄的半导体量子点膜,其中薄的半导体量子点膜包括介质内的半导体量子点, 与半导体衬底掺杂相同类型的杂质; b)通过部分蚀刻形成孔阵列,其中孔阵列穿透薄的半导体量子点膜; c)在其上形成有孔阵列的薄半导体量子点膜上沉积半导体衬底掺杂了杂质的半导体; 以及d)在所述半导体上顺序形成透明导电膜和上电极,其中所述互补杂质被掺杂并在所述半导体衬底的下部形成下电极。
    • 5. 发明申请
    • Apparatus for Detecting Nano Particle Having Nano-Gap Electrode
    • 用于检测具有纳米间隙电极的纳米颗粒的装置
    • US20100282605A1
    • 2010-11-11
    • US12810461
    • 2008-11-10
    • Wan Soo YunHyung Ju ParkCho Yeon Lee
    • Wan Soo YunHyung Ju ParkCho Yeon Lee
    • G01N27/00
    • G01N27/3278
    • The present invention relates to a nanoparticle sensor which is capable to identify an existence/nonexistence, a concentration, a size distribution and a component of the nanoparticles using an electrode pair having a separated distance of a nano-gap, in which the nanoparticle sensor includes a unit element configured with a plurality of unit electrodes electrically operated independently from each other and detects the nanoparticles based on the number of the unit electrodes electrically changed due to the nanoparticles captured into the nano-gap. The nanoparticle sensor of the present invention can detect the component, the size, the size distribution and the concentration of the nanoparticles by single measurement, have high reliability and regeneration while reducing a detection time by statistical method via a plurality of electrode pairs having the nano-gap, and detect even very low concentration of nanoparticles.
    • 本发明涉及一种纳米粒子传感器,其能够使用具有分离的纳米间隙的距离的电极对来识别纳米颗粒的存在/不存在,浓度,尺寸分布和组分,其中纳米颗粒传感器包括 单元元件,其配置有彼此独立地电操作的多个单元电极,并且基于由于捕获到纳米间隙中的纳米颗粒而电变化的单位电极的数量来检测纳米颗粒。 本发明的纳米颗粒传感器可以通过单次测量来检测纳米颗粒的组分,尺寸,尺寸分布和浓度,具有高的可靠性和再生能力,同时通过统计方法通过具有纳米尺度的多个电极对减少检测时间 并且检测到甚至非常低浓度的纳米颗粒。
    • 6. 发明授权
    • Nanomachined mechanical components using nanoplates, methods of fabricating the same and methods of manufacturing nanomachines
    • 使用纳米板的纳米机械部件,其制造方法和制造纳米机械的方法
    • US07557044B2
    • 2009-07-07
    • US11263476
    • 2005-10-31
    • Yong Ju YunChil Seong AhDong Han HaHyung Ju ParkWan Soo YunKwang Cheol LeeGwang Seo Park
    • Yong Ju YunChil Seong AhDong Han HaHyung Ju ParkWan Soo YunKwang Cheol LeeGwang Seo Park
    • H01L21/302
    • B81C99/0095B81B2201/035B81C2201/0143Y10S977/883Y10S977/888
    • Disclosed herein is a method of fabricating nano-components using nanoplates, including the steps of: printing a grid on a substrate using photolithography and Electron Beam Lithography; spraying an aqueous solution dispersed with nanoplates onto the grid portion to position the nanoplates on the substrate; depositing a protective film of a predetermined thickness on the substrate and the nanoplates positioned on the substrate; ion-etching the nanoplates deposited with the protective film by using a Focused Ion Beam (FIB) or Electron Beam Lithography; and eliminating the protective film remaining on the substrate using a protective film remover after the ion-etching of the nanoplates, and a method of manufacturing nanomachines or nanostructures by transporting such nano-components using a nano probe and assembling with other nano-components. The present invention makes it possible to fabricate the high-quality nano-components in a more simple and easier manner at a lower cost, as compared to other conventional methods. Further, the present invention provides a method of implementing nanomachines through combination of such nano-components and biomolecules, etc.
    • 本文公开了使用纳米板制造纳米组分的方法,包括以下步骤:使用光刻和电子束光刻在衬底上印刷栅格; 将分散有纳米板的水溶液喷射到栅格部分上以将纳米板定位在基底上; 在衬底和位于衬底上的纳米板上沉积预定厚度的保护膜; 通过使用聚焦离子束(FIB)或电子束光刻法离子蚀刻沉积有保护膜的纳米板; 并且在纳米板的离子蚀刻之后使用保护膜去除剂去除残留在基板上的保护膜,以及通过使用纳米探针传输这种纳米成分并与其他纳米成分组装来制造纳米机械或纳米结构的方法。 与其他常规方法相比,本发明可以以更简单和更容易的方式以更低的成本制造高质量的纳米组分。 此外,本发明提供了通过这些纳米组分和生物分子等的组合来实现纳米机器的方法。
    • 10. 发明授权
    • Linear motion apparatus under ultra high vacuum
    • 直线运动装置在超高真空下
    • US6019008A
    • 2000-02-01
    • US903797
    • 1997-07-31
    • Sung-Bock KimWan-Soo YunEl-Hang Lee
    • Sung-Bock KimWan-Soo YunEl-Hang Lee
    • H01L21/68B25J1/08B25J18/02
    • B25J18/025B25J1/08Y10S414/135Y10T403/32467Y10T74/18848Y10T74/20468
    • A linear motion apparatus for moving an object in a vacuum chamber comprising an antenna or a telescoping shaft such as a fishing rod to effectively utilize space, and to avoid the need of a rear projection thereby achieving stability. The linear motion apparatus includes: a body having a space portion penetrated horizontally; a rotary handle which penetrates at a right angle to the space portion of the body thereby controlling a linear motion; locking portion which is mounted in the space portion of the body, is inserted into a shaft of the rotary handle, and used to lock the motion; a guide rod which is formed as a multistage rod, whose one end is inserted and fixed into a predetermined position of the space portion of the body; linear motion force providing portion whose one end is fixed to the rotary plate and the other end is fixed to a nose portion of the guide rod, thereby providing a linear motion force to the guide rod; and a bellows seal which surrounds a circumference of the guide rod, is shrunken or expanded according to a linear motion of the guide rod. As a result, this apparatus performs a linear motion control by a contraction and expansion under ultra high vacuum.
    • 一种用于在包括天线或诸如钓鱼杆的伸缩轴的真空室中移动物体的线性运动装置,以有效利用空间,并且避免了后部突出物的需要,从而实现稳定性。 线性运动装置包括:主体,其具有水平地穿透的空间部分; 旋转手柄,其以直角穿过主体的空间部分,从而控制直线运动; 安装在主体的空间部分中的锁定部分插入旋转手柄的轴中,并用于锁定运动; 导杆,其形成为多级杆,其一端插入并固定到本体的空间部分的预定位置; 直线运动力提供部分,其一端固定在旋转板上,另一端固定在导杆的鼻部,从而向导杆提供线性运动力; 并且围绕导杆的圆周的波纹管密封件根据导杆的直线运动而收缩或膨胀。 结果,该装置通过在超高真空下的收缩和膨胀进行直线运动控制。