会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Semiconductor device and its manufacturing method
    • 半导体器件及其制造方法
    • US08043918B2
    • 2011-10-25
    • US12840430
    • 2010-07-21
    • Takashi KuroiKatsuyuki HoritaMasashi KitazawaMasato Ishibashi
    • Takashi KuroiKatsuyuki HoritaMasashi KitazawaMasato Ishibashi
    • H01L21/336
    • H01L21/823475H01L21/743H01L21/76229H01L21/763H01L21/823481H01L21/823871H01L21/823878H01L29/7833H01L2924/0002H01L2924/00
    • To manufacture in high productivity a semiconductor device capable of securely achieving element isolation by a trench-type element isolation and capable of effectively preventing potentials of adjacent elements from affecting other nodes, a method of manufacturing the semiconductor device includes: a step of forming a first layer on a substrate; a step of forming a trench by etching the first layer and the substrate; a step of thermally oxidizing an inner wall of the trench; a step of depositing a first conductive film having a film thickness equal to or larger than one half of the trench width of the trench on the substrate including the trench; a step of removing a first conductive film from the first layer by a CMP method and keeping the first conductive film left in only the trench; a step of anisotropically etching the first conductive film within the trench to adjust the height of the conductive film to become lower than the height of the surface of the substrate; a step of depositing an insulating film on the first conductive film by the CVD method to embed the upper part of the first conductive film within the trench; a step of flattening the insulating film by the CMP method; and a step of removing the first layer.
    • 为了以高生产率制造能够通过沟槽型元件隔离可靠地实现元件隔离并且能够有效地防止相邻元件的电位影响其他节点的半导体器件,制造半导体器件的方法包括:形成第一 层; 通过蚀刻第一层和衬底形成沟槽的步骤; 热氧化沟槽内壁的步骤; 在包括沟槽的衬底上沉积膜厚度等于或大于沟槽的沟槽宽度的一半的第一导电膜的步骤; 通过CMP方法从第一层除去第一导电膜并保持第一导电膜仅留在沟槽中的步骤; 在沟槽内各向异性蚀刻第一导电膜的步骤,以调节导电膜的高度,使其低于衬底表面的高度; 通过CVD法在第一导电膜上沉积绝缘膜以将第一导电膜的上部嵌入沟槽内的步骤; 通过CMP方法使绝缘膜平坦化的步骤; 以及去除第一层的步骤。
    • 3. 发明申请
    • Semiconductor device, and manufacturing method thereof
    • 半导体装置及其制造方法
    • US20060163624A1
    • 2006-07-27
    • US11319740
    • 2005-12-29
    • Takashi Kuroi
    • Takashi Kuroi
    • H01L29/76H01L21/28
    • H01L21/28097H01L21/26506H01L21/26513H01L21/823814H01L21/823835H01L29/41783H01L29/665H01L29/66507H01L29/66545H01L29/6659H01L29/66643
    • The present invention provides a semiconductor device having a fully silicided gate electrode (full-silicide gate electrode) and a manufacturing method thereof, that has no problem of the increase in junction leak current, can increase a thickness of a metal silicide film formed on a source/drain region, and can form a fully silicided gate electrode and metal silicide film with one silicide forming process. A metal silicide film is formed such that its upper main face becomes higher than a semiconductor substrate. The thickness of the metal silicide film can be increased in order to secure a sufficient distance from an interface between the metal silicide film and the semiconductor substrate to an interface between a source/drain diffusion layer and the semiconductor substrate. As a result, the thickness of the metal silicide layer can be increased while avoiding the increase in junction leak current, even if a full-silicide gate electrode is formed.
    • 本发明提供了一种具有全硅化物栅电极(全硅化物栅电极)及其制造方法的半导体器件,其不存在结漏电流增加的问题,可以增加形成在金属硅化物膜上的金属硅化物膜的厚度 源极/漏极区域,并且可以形成具有一个硅化物形成工艺的完全硅化的栅电极和金属硅化物膜。 形成金属硅化物膜,使得其上主面变得高于半导体衬底。 可以增加金属硅化物膜的厚度,以确保从金属硅化物膜和半导体衬底之间的界面到源极/漏极扩散层和半导体衬底之间的界面的足够的距离。 结果,即使形成全硅化物栅电极,也可以避免金属硅化物层的厚度,同时避免结漏电流的增加。
    • 4. 发明申请
    • Semiconductor device and manufacturing method thereof
    • 半导体装置及其制造方法
    • US20060027883A1
    • 2006-02-09
    • US11241921
    • 2005-10-04
    • Takashi KuroiYasuyoshi ItohKatsuyuki HoritaKatsuomi Shiozawa
    • Takashi KuroiYasuyoshi ItohKatsuyuki HoritaKatsuomi Shiozawa
    • H01L29/94
    • H01L29/66553H01L21/26586H01L21/28088H01L21/28114H01L29/42376H01L29/4966H01L29/517H01L29/66545H01L29/6659
    • An object is to obtain a semiconductor device in which channel length is reduced without increasing the gate resistance to realize higher operation speed and its manufacturing method. An MOSFET has a trench-type element isolation structure (2) formed in the main surface of a semiconductor substrate (1), a pair of extensions (3) and source/drain regions (4) selectively formed in the main surface of the semiconductor substrate (1) to face each other through a channel region (50), a silicon oxide film (5) formed on the trench-type element isolation structure (2) and on the source/drain regions (4) through a silicon oxide film (12), sidewalls (6) formed on sides of the silicon oxide film (5), a gate insulating film (7) formed on the main surface of the semiconductor substrate (1) in the part in which the channel region (50) is formed, and a gate electrode (8) formed to fill a recessed portion in an inversely tapered form formed by the sides of the sidewalls (6) and the upper surface of the gate insulating film (7).
    • 本发明的目的是获得其中通道长度减小而不增加栅极电阻以实现更高的操作速度的半导体器件及其制造方法。 MOSFET具有形成在半导体衬底(1)的主表面中的沟槽型元件隔离结构(2),在半导体的主表面中选择性地形成的一对延伸部(3)和源极/漏极区域(4) 衬底(1)通过沟道区域(50)彼此面对,通过硅氧化膜形成在沟槽型元件隔离结构(2)上和源极/漏极区域(4)上的氧化硅膜(5) (12),形成在氧化硅膜(5)的侧面上的侧壁(6),形成在半导体衬底(1)的主表面上的沟道区域(50)的部分中的栅极绝缘膜(7) 以及形成为以由侧壁(6)的侧面和栅极绝缘膜(7)的上表面形成的倒锥形状填充凹部的栅电极(8)。
    • 7. 发明授权
    • Semiconductor device with a silicide layer
    • 具有硅化物层的半导体器件
    • US5710438A
    • 1998-01-20
    • US550939
    • 1995-10-31
    • Hidekazu OdaTakashi Kuroi
    • Hidekazu OdaTakashi Kuroi
    • H01L29/78H01L21/265H01L21/28H01L21/285H01L21/336H01L29/45H01L29/49H01L29/76H01L27/108H01L29/94
    • H01L29/66575H01L21/28052H01L21/28518H01L29/456H01L29/4933
    • To form a silicide layer excellent in flatness, uniform in film thickness, and less in junction leak, by destroying the natural oxide film which adversely affects a formation of silicide layer of cobalt or nickel. A cobalt layer (7) is formed in a film thickness of 20 nm or less on an electrode layer (4A) of a gate electrode (4) and on source/drain diffusion layers (1, 2), and a nitrogen (8) is injected by the ion implantation at a density of about 1E15/cm.sup.3 with an injection energy of 10 keV or more. At this time, the nitrogens (8) destroy the natural oxide film existing in the interface of the cobalt layer (7) and electrode layer (4A), and in the interface of the cobalt layer (7) and the source/drain diffusion layers (1, 2), and distribute deeply into the electrode layer (4A) and the source/drain diffusion layers (1, 2). Later, by a silicide forming reaction of cobalt, a silicide layer (6) is formed. Since the natural oxide film does not exist, the silicide forming reaction proceeds uniformly. Instead of the nitrogen (8), fluorine or silicon may be also used.
    • 通过破坏对钴或镍的硅化物层的形成有不利影响的自然氧化膜,形成平坦度优异,膜厚均匀,并且漏点较少的硅化物层。 在栅电极(4)的电极层(4A)和源/漏扩散层(1,2)上形成厚度为20nm以下的钴层(7),氮(8) 通过离子注入以约1E15 / cm3的密度注入,注入能量为10keV以上。 此时,氮(8)破坏存在于钴层(7)和电极层(4A)的界面中的自然氧化膜,并且在钴层(7)和源极/漏极扩散层 (1,2),并且深深地分布到电极层(4A)和源极/漏极扩散层(1,2)中。 然后,通过钴的硅化物形成反应,形成硅化物层(6)。 由于天然氧化物膜不存在,所以硅化物形成反应均匀地进行。 代替氮(8),也可以使用氟或硅。
    • 9. 发明授权
    • Semiconductor memory device capable of electrically erasing and writing
information
    • 能够电擦除和写入信息的半导体存储器件
    • US5488245A
    • 1996-01-30
    • US318482
    • 1994-10-05
    • Masahiro ShimizuMasayoshi ShirahataTakashi KuroiTakehisa Yamaguchi
    • Masahiro ShimizuMasayoshi ShirahataTakashi KuroiTakehisa Yamaguchi
    • H01L21/8247H01L27/115H01L29/788H01L29/792
    • H01L27/11521H01L27/115H01L29/7883
    • A semiconductor memory device and a manufacturing method of the same can effectively prevent deterioration of endurance characteristic which may occur in a data erasing operation, and a drain disturb phenomenon which may occur in a data writing operation. In the semiconductor memory device, an N-type impurity layer 3 is formed on a main surface of a P-type silicon substrate 1 located in a channel region. Thereby, a high electric field is not applied to a boundary region between the N-type impurity layer 3 and an N-type source diffusion region 10 during erasing of data, so that generation of interband tunneling in this region is effectively prevented. Also in this semiconductor memory device, the drain diffusion region 9 has an offset structure in which no portion thereof overlaps the floating gate electrode 5. Therefore, an electric field, which is generated across the floating gate electrode 5 and the drain diffusion region 9 in an unselected cell during writing of data, is weakened, as compared with the prior art, and the drain disturb phenomenon due to F-N tunneling is effectively prevented.
    • 半导体存储器件及其制造方法可以有效地防止在数据擦除操作中可能发生的耐久特性的劣化,以及在数据写入操作中可能发生的漏极干扰现象。 在半导体存储器件中,在位于沟道区域中的P型硅衬底1的主表面上形成N型杂质层3。 因此,在擦除数据期间,不向N型杂质层3和N型源极扩散区域10之间的边界区域施加高电场,从而有效地防止了在该区域产生带间隧穿。 另外,在该半导体存储器件中,漏极扩散区域9具有偏移结构,其中没有任何部分与浮置栅极电极5重叠。因此,在浮置栅极电极5和漏极扩散区域9两端产生的电场 与现有技术相比,写入数据期间的未选择的单元被削弱,并且有效地防止了由于FN隧穿引起的漏极干扰现象。