会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 54. 发明申请
    • E-Fuse and anti-E-Fuse device structures and methods
    • 电子熔断器和反电子保险丝器件的结构和方法
    • US20060220174A1
    • 2006-10-05
    • US11440199
    • 2006-05-24
    • Jeffrey BrownRobert GauthierJed RankinWilliam Tonti
    • Jeffrey BrownRobert GauthierJed RankinWilliam Tonti
    • H01L29/00
    • H01L23/5252H01L23/5256H01L2924/0002H01L2924/00
    • Standard photolithography is used to pattern and fabricate a final polysilicon wafer imaged structure which is smaller than normal allowable photo-lithographic minimum dimensions. Three different methods are provided to produce such sub-minimum dimension structures, a first method uses a photolithographic mask with a sub-minimum space between minimum size pattern features of the mask, a second method uses a photolithographic mask with a sub-minimum widthwise jog or offset between minimum size pattern features of the mask, and a third method is a combination of the first and second methods. Each of the three methods can be used with three different embodiments, a first embodiment is a polysilicon E-Fuse with a sub-minimum width polysilicon fuse line, a second embodiment is a work function altered/programmed self-aligned MOSFET E-Fuse with a sub-minimum width fuse line, and a third embodiment is a polysilicon MOSFET E-Fuse with a sub-minimum width fuse line which is programmed with a low trigger voltage snapback.
    • 使用标准光刻法来图案化和制造最终的多晶硅晶片成像结构,该结构小于正常允许光刻最小尺寸。 提供了三种不同的方法来产生这样的次最小维度结构,第一种方法使用具有掩模的最小尺寸图案特征之间的亚最小空间的光刻掩模,第二种方法使用光刻掩模与次最小宽度方向点动 或掩模的最小尺寸图案特征之间的偏移,第三种方法是第一和第二方法的组合。 三种方法中的每一种可以与三种不同的实施例一起使用,第一实施例是具有亚最小宽度多晶硅熔丝线的多晶硅E熔丝,第二实施例是工作功能改变/编程的自对准MOSFET E-Fuse,具有 亚最小宽度熔丝线,第三实施例是具有低电平触发电压快速编程的亚最小宽度熔丝线的多晶硅MOSFET E-Fuse。
    • 59. 发明申请
    • ELECTRONICALLY PROGRAMMABLE ANTIFUSE AND CIRCUITS MADE THEREWITH
    • 电子可编程抗体和电路
    • US20050073023A1
    • 2005-04-07
    • US10605523
    • 2003-10-06
    • John FifieldWagdi AbadeerWilliam Tonti
    • John FifieldWagdi AbadeerWilliam Tonti
    • H01L23/525H01L21/82H01L29/00
    • H01L23/5252H01L2924/0002H01L2924/3011H01L2924/00
    • An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
    • 一种反熔丝装置(120),其包括彼此串联布置的偏置元件(124)和可编程反熔丝元件(128),以形成具有位于偏置和反熔丝元件之间的输出节点(F)的分压器。 当反熔丝装置处于其未编程状态时,偏置元件和反熔丝元件中的每一个都是不导电的。 当反熔丝装置处于其编程状态时,偏置元件保持不导电,但是反熔丝元件是导电的。 反熔丝元件在其未编程状态和编程状态之间的电阻差异导致当在反熔断器件上施加1V的电压时,在输出节点处看到的电压差为几百微升。 该电压差非常高以至于可以使用简单的感测电路(228)容易地感测。
    • 60. 发明授权
    • MOSFET having a low aspect ratio between the gate and the source/drain
    • MOSFET在栅极和源极/漏极之间具有低的纵横比
    • US06528855B2
    • 2003-03-04
    • US09911894
    • 2001-07-24
    • Qiuyi YeWilliam TontiYujun LiJack A. Mandelman
    • Qiuyi YeWilliam TontiYujun LiJack A. Mandelman
    • H01L29772
    • H01L29/0653H01L21/823814H01L21/823878H01L29/66621H01L29/66636H01L29/7834
    • A MOSFET having a new source/drain (S/D) structure is particularly adapted to smaller feature sizes of modern CMOS technology. The S/D conductors are located on the shallow trench isolation (STI) to achieve low junction leakage and low junction capacitance. The S/D junction depth is defined by an STI etch step (according to a first method of making the MOSFET) or a silicon etch step (according to a second method of making the MOSFET). By controlling the etch depth, a very shallow junction depth is achieved. There is a low variation of gate length, since the gate area is defined by etching crystal silicon, not by etching polycrystalline silicon. There is a low aspect ratio between the gate and the S/D, since the gate conductor and the source and drain conductors are aligned on same level. A suicide technique is applied to the source and drain for low parasitic resistance; however, this will not result in severe S/D junction leakage, since the source and drain conductors sit on the STI.
    • 具有新的源极/漏极(S / D)结构的MOSFET特别适用于现代CMOS技术的较小特征尺寸。 S / D导体位于浅沟槽隔离(STI)上,以实现低结漏电和低结电容。 通过STI蚀刻步骤(根据制造MOSFET的第一种方法)或硅蚀刻步骤(根据制造MOSFET的第二种方法)限定S / D结深度。 通过控制蚀刻深度,实现非常浅的结深度。 栅极长度的变化很小,因为栅极区域是通过蚀刻晶体硅来定义的,而不是蚀刻多晶硅。 由于栅极导体和源极和漏极导体在同一个电平上对齐,栅极和S / D之间的纵横比较低。 自杀技术应用于源极和漏极,用于低寄生电阻; 然而,这不会导致严重的S / D结泄漏,因为源极和漏极导体位于STI上。