会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Fiber bragg grating peak detection system and method
    • 光纤布拉格光栅峰值检测系统及方法
    • US06346702B1
    • 2002-02-12
    • US09458911
    • 1999-12-10
    • Michael A. DavisDavid R. FournierDavid G. BellemoreWilliam M. Stielau
    • Michael A. DavisDavid R. FournierDavid G. BellemoreWilliam M. Stielau
    • G01J104
    • H04B10/675
    • A fiber Bragg grating peak detection system has a broadband source that provides a broadband optical signal, a fiber Bragg grating and a variable threshold and/or grating profile peak detection unit. The fiber Bragg grating responds to the broadband optical signal, and further responds to a physical parameter, for providing a fiber Bragg grating optical signal containing information about the physical parameter. The variable threshold or grating profile peak detection unit responds to the fiber Bragg grating optical signal, for providing a variable threshold or grating profile peak detection unit signal containing information about a peak detected in the fiber Bragg grating optical signal that is used to determine the physical parameter. The variable threshold or grating profile peak detection unit detects the peak using either a variable threshold peak detection or a grating profile peak detection, or a combination thereof. During the variable threshold peak detection, the variable threshold or grating profile peak detection unit determines a respective local threshold value for each wavelength over a spectral band of the fiber Bragg grating optical signal. During the grating profile peak detection, the detection unit determines a grating profile on each side of the peak.
    • 光纤布喇格光栅峰值检测系统具有提供宽带光信号的宽带光源,光纤布拉格光栅和可变阈值和/或光栅轮廓峰值检测单元。 光纤布拉格光栅响应于宽带光信号,并且进一步响应物理参数,用于提供包含关于物理参数的信息的光纤布拉格光栅光信号。 可变阈值或光栅轮廓峰值检测单元响应于光纤布拉格光栅光信号,用于提供可变阈值或光栅轮廓峰值检测单元信号,该信号包含关于在光纤布拉格光栅光信号中检测到的峰值的信息,该信号用于确定物理 参数。 可变阈值或光栅轮廓峰值检测单元使用可变阈值峰值检测或光栅轮廓峰值检测或其组合来检测峰值。 在可变阈值峰值检测期间,可变阈值或光栅轮廓峰值检测单元在光纤布拉格光栅光信号的光谱带上确定每个波长的相应局部阈值。 在光栅轮廓峰值检测期间,检测单元确定峰顶两侧的光栅轮廓。
    • 45. 发明申请
    • MULTI-BAND FOCAL PLANE ARRAY
    • 多带对焦平面阵列
    • US20090173883A1
    • 2009-07-09
    • US11493121
    • 2006-07-26
    • Christopher Lee KauffmanGerald Pray GriffithRonald B. JonesSung-Shik YooMichael A. Davis
    • Christopher Lee KauffmanGerald Pray GriffithRonald B. JonesSung-Shik YooMichael A. Davis
    • H01L27/14H01L27/00
    • H01L27/14649G01J3/36
    • A multi-band focal plane array architecture operative to detect multiple spectral image. The multi-band focal plane array architecture has an integrated readout circuit, a plurality of first detectors integrated in the readout circuit and a plurality of second detectors deposited on the readout circuit. Preferably, the first detectors are operative to detect visible signals and the second detectors are operative to detect infrared signals. The first and second detectors are arranged in a checkerboard pattern, in alternate rows or columns, or at least partially overlapped with each other to realize simultaneous detection in two different wavelength bands. The architecture may also have an additional integrated readout circuit flip-chip bonded to the integrated readout circuit. By forming a plurality of third detectors on the additional integrated readout circuit, a tri-band focal plane array may be realized. In one embodiment, a dual-band focal plane array architecture by forming two arrays of detectors on two individual integrated readout circuit and flip-chip bonding these two readout circuits.
    • 一种可以检测多个光谱图像的多波段焦平面阵列结构。 多频带焦平面阵列结构具有集成读出电路,集成在读出电路中的多个第一检测器和沉积在读出电路上的多个第二检测器。 优选地,第一检测器可操作以检测可见信号,并且第二检测器可操作以检测红外信号。 第一和第二检测器被布置成棋盘图案,以交替行或列排列,或至少部分地彼此重叠,以实现两个不同波长带中的同时检测。 该架构还可以具有结合到集成读出电路的额外的集成读出电路倒装芯片。 通过在附加集成读出电路上形成多个第三检测器,可以实现三波段焦平面阵列。 在一个实施例中,双波段焦平面阵列架构通过在两个单独的集成读出电路上形成两个检测器阵列并将这两个读出电路进行倒装芯片接合。
    • 49. 发明授权
    • Method for reducing skew in a real-time centroid calculation
    • 减少实时重心计算中的偏差的方法
    • US06804693B2
    • 2004-10-12
    • US09929423
    • 2001-08-14
    • David G. BellemoreDavid R. FournierMichael A. Davis
    • David G. BellemoreDavid R. FournierMichael A. Davis
    • G06F700
    • G01R19/04G01L1/246G01R19/2509
    • A method and corresponding apparatus for determining the centroid (Vc) of a waveform signal being sampled at a set of parameter values (Vi, i=1, . . . , n) yielding a corresponding set of sampled amplitudes (Ai, i=1, . . . , n), each parameter value and corresponding amplitude forming a sampled point (Vi, Ai), the method including the steps of: selecting an amplitude at which to create an interpolated point; interpolating a first parameter value corresponding to the amplitude selected in the step of selecting an amplitude; and performing a centroid calculation using only the sampled points with an amplitude greater than a predetermined threshold. The waveform is sometimes sampled in the presence of background noise, and the method sometimes also includes: estimating the background (Bi) for each value in the set of parameter values at which sampling is performed; and reducing the amplitude (Ai) of each sampled amplitude by the background (Bi) so estimated.
    • 一种用于确定在一组参数值(Vi,i = 1,...,n)上采样的波形信号的质心(Vc)的方法和相应装置,产生一组相应的采样幅度(Ai,i = 1 ,...,n),每个参数值和对应的幅度形成采样点(Vi,Ai),所述方法包括以下步骤:选择创建内插点的幅度; 内插与在选择幅度的步骤中选择的幅度对应的第一参数值; 以及仅使用振幅大于预定阈值的采样点进行质心计算。 有时在有背景噪声的情况下采样波形,并且该方法有时还包括:对进行采样的参数值集合中的每个值估计背景(Bi); 并且将每个采样振幅的振幅(Ai)减小所估计的背景(Bi)。
    • 50. 发明授权
    • Method for improving the accuracy in the determination of a waveform center of a waveform signal
    • US06529923B2
    • 2003-03-04
    • US09087447
    • 1998-05-29
    • Michael A. DavisDavid G. Bellemore
    • Michael A. DavisDavid G. Bellemore
    • G06F700
    • G01R19/2509G01R19/04G01R23/02
    • Prior to performing a centroid calculation on a waveform signal that is discretely sampled at a limited number of sample points, the last sample point (VN, AN) is eliminated if the magnitude of the amplitude at the first sample point (A1) is greater than the last sample point (AN), and the difference in magnitude between the first and last sample points (A1−AN) is greater than the difference in magnitude between the second to last sample point and the first sample point (AN−1−A1). The first sample point (V1, A1) is eliminated prior to the centroid calculation if the magnitude of the amplitude at the last sample point (AN) is greater than the first sample point (A1), and the difference in magnitude between the last and first sample points (AN−A1) is greater than the difference in magnitude between the second sample point and the last sample point (A2−AN). In a second embodiment of the invention, a first centroid calculation is performed using a set of samples in which one side of the waveform signal has the lowest amplitude value sample. Sample values on the side of the waveform initially having the lowest amplitude value are then eliminated until the opposing side of the waveform has the lowest amplitude value sample. A second centroid calculation is then performed and the two centroid calculations are averaged together to arrive at an average centroid calculation. In a third embodiment of the invention, the amplitude components of the waveform sample values are normalized to the lowest amplitude value sample point and a first centroid calculation is performed on the normalized waveform signal. Next, the waveform is normalized to the lowest amplitude value sample point on the other side of the waveform signal and a second centroid calculation is performed. The two centroid calculations are then averaged to provide an averaged normalized centroid calculation.