会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 31. 发明申请
    • INTERFEROMETER FOR TSV MEASUREMENT AND MEASUREMENT METHOD USING SAME
    • 用于TSV测量的干涉仪和使用相同的测量方法
    • WO2012141544A3
    • 2013-01-10
    • PCT/KR2012002843
    • 2012-04-13
    • SNU PRECISION CO LTDLEE KI HUNSHIN HEUNG HYUNPAHK HEUI JAE
    • LEE KI HUNSHIN HEUNG HYUNPAHK HEUI JAE
    • H01L21/66
    • G01B11/24G01B2210/56H01L22/12H01L2924/0002H01L2924/00
    • The present invention relates to an interferometer for TSV measurement and a measurement method using the same, and according to the present invention, an interferometer for TSV measurement comprises: a beam splitter on which the light generated from a light source is incident and is divided and outputted in a first direction and a second direction that are vertical to each other, and which combines lights inputted from said first direction and said second direction and outputs a combined light; a measuring object having mirrors and at least one TSV, wherein the mirrors are respectively disposed in said first direction or said second direction and reflect, to said beam splitter, the outputted light which is outputted from said beam splitter after the light has been inputted; an imaging means which receives the combined light that is reflected from said mirrors and said measuring object and is outputted from said beam splitter, and forms an interference signal through said combined light; an object lens which is positioned between said beam splitter and said imaging means, or is positioned between said beam splitter and said measuring object; and a variable field stop which is positioned between said beam splitter and said imaging means, so that the focus of the lights divided on said measuring object can be adjusted to a reference position, which is the entrance of said TSV, and to a variable position, which is the bottom surface of said TSV, thereby measuring a diameter and a depth of a via hole on the basis of an interference signal at said reference position and the interference signal at said variable position. Thus, the invention provides the interferometer for TSV measurement and the measurement method using the same, in which: the diameter and the depth of the TSV are measured by using the variable field stop for adjusting the focus of the lights to the entrance and the bottom surface of the TSV during TSV measurement, thereby reducing measurement time and a capacity of result data; and a telecentric lens, which enables the light incident on the TSV to substantially become a straight light, is used such that the intensity of radiation can reach the bottom surface even though an aspect ratio like TSV is large, whereby the measurement accuracy is improved.
    • 本发明涉及一种用于TSV测量的干涉仪和使用该干涉仪的测量方法,根据本发明,用于TSV测量的干涉仪包括:分束器,从光源产生的光入射到其上并被分割; 在彼此垂直的第一方向和第二方向上输出,并且组合从所述第一方向和所述第二方向输入的光,并输出组合的光; 具有反射镜和至少一个TSV的测量对象,其中所述反射镜分别设置在所述第一方向或所述第二方向上,并且在输入光之后将从所述分束器输出的输出光反射到所述分束器; 接收从所述反射镜和所述测量对象反射并从所述分束器输出的组合光的成像装置,并通过所述组合光形成干涉信号; 位于所述分束器和所述成像装置之间或位于所述分束器和所述测量对象之间的物镜; 以及位于所述分束器和所述成像装置之间的可变场停止件,使得可以将分配在所述测量对象上的光的焦点调整到作为所述TSV的入口的参考位置和可变位置 ,其是所述TSV的底表面,由此基于所述参考位置处的干扰信号和所述可变位置处的干扰信号来测量通孔的直径和深度。 因此,本发明提供了用于TSV测量的干涉仪和使用该干涉仪的测量方法,其中:通过使用用于将光的焦点调节到入口和底部的可变场停止来测量TSV的直径和深度 在TSV测量期间TSV的表面,从而减少测量时间和结果数据的容量; 并且使用能够使入射在TSV上的光基本上变成直线光的远心透镜,使得尽管诸如TSV的纵横比较大,辐射的强度可以到达底面,从而提高了测量精度。
    • 32. 发明申请
    • IMAGE ACQUISITION METHOD AND SYSTEM FOR OBJECT TO BE MEASURED USING CONFOCAL MICROSCOPE STRUCTURE
    • 使用协同微结构结构测量对象的图像采集方法和系统
    • WO2011126219A3
    • 2012-01-05
    • PCT/KR2011001767
    • 2011-03-14
    • SNU PRECISION CO LTDKIM TAI WOOK
    • KIM TAI WOOK
    • G02B21/06G01B9/04G01N21/17G01N21/39
    • G02B21/0052
    • The present invention relates to an image acquisition method and system for an object to be measured using a confocal microscope structure. According to the present invention, the image acquisition method for the object to be measured using the confocal microscope structure, in which: light is generated from the upper part of an object to be measured; and images are obtained by sequentially deflecting and scanning the light on XY planes of a scan area by using an acousto-optic deflector, comprising the steps of: an intensity information acquisition step for generating light through a microscope light source, inputting the generated light to an optical path of a scanning unit so that the generated light is irradiated on the overall scan area, and obtaining and analyzing entire images of the scan area with a camera to obtain intensity information of the light at each scan position; an information setup step for mapping the obtained intensity information of the light at each scan position into location information of each scan position, and setting and storing the information to and as mapping information; a loading step for loading the mapping information stored in the information setup step according to a control signal; a transmission step for setting acoustic intensity information on the basis of the loaded mapping information, and transmitting the set information to the acousto-optic deflector; a scanning step for outputting the light, which has been inputted and outputted to and from the acousto-optic deflector, by adjusting the intensity of the light according to the acoustic intensity information as soon as the light has been deflected, scanning and reflecting the outputted light at each scan position through the scanning unit, and inputting the reflected light to the scanning unit; a recording step for detecting, by a photo detector, the light reflected from each scan position and inputted to the scanning unit, and recording detected optical detection signals; a Z-axis scanning step for changing a distance between the object to be measured and the scanning unit in a Z-axis direction to a certain distance, and recording the optical detection signals at each scan position in accordance with the change in the distance by sequentially performing said transmission step, said scanning step, and said recording step, wherein the optical detection signals at each scan position in accordance with the change in the distance are performed at least one time; and an image acquisition step for selecting one of the plurality of optical detection signals at each scan position detected through the Z-axis scanning step, and forming images at each scan position in accordance with the acoustic intensity information to obtain entire images of the scan area. Thus, the invention provides the image acquisition method and system for the object to be measured using the confocal microscope structure, in which images are obtained by adjusting the intensity of the scanned light according to the intensity of the light detected from each scan position so as to match with brightness differences of images caused by differences in detection signals which are changed according to surface information such as reflectivity, roughness, and reflection angles or the like at each scan position of the scan area, thereby improving measurement precision of the scan area.
    • 本发明涉及一种使用共聚焦显微镜结构的待测物体的图像采集方法和系统。 根据本发明,使用共焦显微镜结构的待测量对象的图像获取方法,其中:从被测量物体的上部产生光; 并且通过使用声光偏转器顺序地偏转和扫描扫描区域的XY平面上的光来获得图像,包括以下步骤:强度信息获取步骤,用于通过显微镜光源产生光,将所产生的光输入到 扫描单元的光路,使得所生成的光被照射在整个扫描区域上,并且利用照相机获得和分析扫描区域的整个图像,以获得每个扫描位置处的光的强度信息; 信息设置步骤,用于将获取的每个扫描位置处的光的强度信息映射到每个扫描位置的位置信息,以及将信息设置和存储为映射信息; 加载步骤,用于根据控制信号加载存储在信息设置步骤中的映射信息; 传输步骤,用于根据加载的映射信息设置声强信息,并将设置信息发送到声光偏转器; 一个扫描步骤,用于通过一旦光被偏转来调节根据声强度信息的光的强度来输出已经被输入和从声光偏转器输出的光,扫描和反射输出 通过扫描单元在每个扫描位置处的光,并将反射光输入到扫描单元; 记录步骤,用于通过光检测器检测从每个扫描位置反射并输入到扫描单元的光,并记录检测到的光检测信号; Z轴扫描步骤,用于将待测物体与扫描单元之间的距离在Z轴方向上改变到一定距离;以及根据距离变化在每个扫描位置记录光学检测信号; Z轴扫描步骤, 依次执行所述发送步骤,所述扫描步骤和所述记录步骤,其中至少一次执行根据所述距离变化的每个扫描位置处的光学检测信号; 以及图像获取步骤,用于选择通过Z轴扫描步骤检测的每个扫描位置处的多个光学检测信号中的一个,并根据声强信息在每个扫描位置形成图像,以获得扫描区域的整个图像 。 因此,本发明提供了使用共聚焦显微镜结构的待测量对象的图像采集方法和系统,其中通过根据从每个扫描位置检测到的光的强度调节扫描光的强度来获得图像,从而 以与由扫描区域的每个扫描位置处根据诸如反射率,粗糙度和反射角等的表面信息而改变的检测信号的差异引起的图像的亮度差匹配,从而提高扫描区域的测量精度。
    • 35. 发明申请
    • APPARATUS FOR MEASURING THREE-DIMENSIONAL PROFILE USING LCD
    • 用于使用LCD测量三维轮廓的装置
    • WO2009028811A8
    • 2010-04-08
    • PCT/KR2008004652
    • 2008-08-11
    • SNU PRECISION CO LTDPARK HEUI JAELEE IL HWANCHOI SOON MINLEE JEONG HO
    • PARK HEUI JAELEE IL HWANCHOI SOON MINLEE JEONG HO
    • G01B11/24
    • G01B11/2518
    • Provided is an apparatus for measuring a three-dimensional profile using a LCD in which a sine wave pattern is formed on a measurement object, whereby image information of the measurement object is obtained using the sine wave pattern and a camera, and the image information is analyzed to measure a profile of the measurement object, the apparatus including a LCD projector including: a light source irradiating light forward; a LCD panel disposed at a front side of the light source, generating a sine wave pattern having a plurality of phases and a plurality of periods; polarization plates respectively disposed on front and rear sides of the LCD panel; a first focusing lens disposed apart from a front side of the LCD panel, focusing the sine wave pattern generated by the LCD panel on the measurement object; and a housing supporting the light source, the LCD panel, the polarization plates and the first focusing lens.
    • 本发明提供一种使用在测量对象上形成正弦波图案的LCD来测量三维轮廓的装置,由此利用正弦波图形和照相机获得测量对象的图像信息,并且图像信息是 分析以测量测量对象的轮廓,该装置包括一个LCD投影仪,其包括:向前照射光的光源; 设置在所述光源的前侧的LCD面板,产生具有多个相位和多个周期的正弦波图案; 分别设置在LCD面板的前侧和后侧的偏振板; 第一聚焦透镜,其与LCD面板的前侧分离,将由LCD面板产生的正弦波图案聚焦在测量对象上; 以及支撑光源,LCD面板,偏振板和第一聚焦透镜的壳体。
    • 36. 发明申请
    • ULTRA-HIGH PRECISION POSITIONING DEVICE AND A METHOD THEREFOR
    • 超高精度定位装置及其方法
    • WO2009102126A3
    • 2009-10-22
    • PCT/KR2009000584
    • 2009-02-06
    • SNU PRECISION CO LTDPARK HEUI JAEAHN WOO JUNGKIM SOUK
    • PARK HEUI JAEAHN WOO JUNGKIM SOUK
    • G05D3/12
    • G01Q10/04B82Y35/00G05B2219/41105G05B2219/45182
    • The invention discloses an ultra-high precision positioning device capable of controlling a micro-movement of micrometres or less with a dual system comprising coarse and fine controls, and a method therefor. The ultra-high precision positioning device according to the invention comprises a micro-actuator, a controller, a first DAC, a second DAC and an adder. The micro-actuator actuates, under the coarse control, a coarse control range between the start point and the end point, and actuates, under the fine control, a fine control range included in the coarse control range. The controller outputs a first digital signal for the coarse control of the micro-actuator and a second digital signal for the fine control of the micro-actuator. The first DAC converts the first digital signal by a first resolution to output a first analog signal, and the second DAC converts the second digital signal by a second resolution to output a second analog signal. The adder outputs a third analog signal for actuating the micro-actuator, and inputs the third analog signal to the micro-actuator.
    • 本发明公开了一种超高精度定位装置及其方法,该超高精度定位装置能够通过包括粗细和精细控制的双重系统来控制微米或更小的微移动。 根据本发明的超高精度定位装置包括微致动器,控制器,第一DAC,第二DAC和加法器。 微型致动器在粗略控制下致动起始点和终点之间的粗略控制范围,并且在精细控制下致动包括在粗调控制范围内的精细控制范围。 控制器输出用于微致动器的粗略控制的第一数字信号和用于微致动器的精细控制的第二数字信号。 第一DAC将第一数字信号转换为第一分辨率以输出第一模拟信号,并且第二DAC将第二数字信号转换为第二分辨率以输出第二模拟信号。 加法器输出用于致动微致动器的第三模拟信号,并将第三模拟信号输入到微致动器。
    • 37. 发明申请
    • METHOD FOR MEASURING THICKNESS
    • 测量厚度的方法
    • WO2009096633A1
    • 2009-08-06
    • PCT/KR2008/001833
    • 2008-04-01
    • SNU PRECISION CO., LTD.PARK, Heui JaeHWANG, Young MinAH, Woo Jung
    • PARK, Heui JaeHWANG, Young MinAH, Woo Jung
    • G01B11/06
    • G01B11/0675
    • Disclosed is a method for measuring a thickness of a subjecting layer attacked on a base layer by means of an interferometer, which includes the steps of: obtaining a correlation equation of a phase difference with respect to thicknesses of sample layers, the thicknesses being different from each other, the sample layers being made from a material substantially equal to a material of the subjecting layer; obtaining a first interference signal with respect to an optical axial direction incident to the base layer at a boundary surface between an air layer and the base layer; obtaining a second interference signal with respect to the optical axial direction at a boundary surface between the subjecting layer and the base layer; obtaining a phase difference between a phase of the first interference signal and a phase of the second interference signal at respective heights substantially equal to each other with respect to the optical axial direction; and determining a thickness of the subjecting layer by inserting the phase difference into the correlation equation.
    • 本发明公开了一种通过干涉仪测量侵蚀在基底层上的受体层的厚度的方法,该方法包括以下步骤:获得相对于样品层厚度的相位差的相关方程,其厚度不同于 彼此,样品层由基本上等于经受层的材料的材料制成; 获得相对于在空气层和基底层之间的边界面处入射到基底层的光轴向的第一干涉信号; 在所述经受层和所述基层之间的边界面处获得相对于所述光轴方向的第二干涉信号; 获得所述第一干涉信号的相位与所述第二干涉信号的相位相对于相对于所述光轴方向彼此大致相等的高度的相位差; 以及通过将相位差插入到相关方程中来确定经受层的厚度。
    • 38. 发明申请
    • VAPORIZATION APPARATUS AND METHOD FOR CONTROLLING THE SAME
    • 蒸发装置及其控制方法
    • WO2011081368A2
    • 2011-07-07
    • PCT/KR2010009316
    • 2010-12-24
    • SNU PRECISION CO LTDSEO SEUNG CHEOLGONG DOO WONLEE JONG HALEE KYUNG BUMJUNG SUNG JAECHO WHANG SIN
    • SEO SEUNG CHEOLGONG DOO WONLEE JONG HALEE KYUNG BUMJUNG SUNG JAECHO WHANG SIN
    • C23C14/24
    • C23C16/4485B01D1/0017B01D1/0082C23C14/24C23C14/543C23C16/52
    • Disclosed are a vaporization apparatus and a control method for the same. The vaporization apparatus includes a vaporization crucible adapted to receive a raw material; a vaporization heating unit adapted to vaporize the raw material by heating the vaporization crucible; a temperature measuring unit adapted to measure temperature of the vaporization crucible; a power measuring unit adapted to measure an applied power of the vaporization heating unit; and a control unit adapted to control a vaporization quantity of the raw material based on any one of a temperature variation value of the temperature measuring unit and a power variation value of the power measuring unit. The vaporization apparatus uses a non-contact/electronic method which measures a vaporization quantity through a temperature variation value and a power variation value during vaporization of a raw material. Therefore, since, differently from a contact method, a vaporization quantity measuring unit does not directly contact a raw material gas, various raw materials can be supplied and large quantity raw material supply or long time raw material supply can be achieved without deterioration of the function. In addition, preciseness of the raw material supply may be enhanced since the electronic method is capable of precise measurement of the vaporization quantity.
    • 公开了一种蒸发装置及其控制方法。 蒸发装置包括适于容纳原料的蒸发坩埚; 蒸发加热单元,其适于通过加热所述蒸发坩埚来蒸发所述原料; 适于测量蒸发坩埚的温度的温度测量单元; 功率测量单元,适于测量蒸发加热单元的施加功率; 以及控制单元,其适于基于所述温度测量单元的温度变化值和所述功率测量单元的功率变化值中的任一个来控制所述原材料的蒸发量。 蒸发装置使用在原料蒸发期间通过温度变化值和功率变化值来测量蒸发量的非接触/电子方法。 因此,与接触方法不同的是,蒸发量测量单元不直接接触原料气体,可以供给各种原料,并且可以实现大量的原料供给或长时间的原料供应而不会降低功能 。 此外,由于电子方法能够精确地测量蒸发量,所以可以提高原料供应的精度。
    • 39. 发明申请
    • METHOD FOR MEASURING A THREE-DIMENSIONAL SHAPE
    • 测量三维形状的方法
    • WO2010134694A3
    • 2011-01-13
    • PCT/KR2010002230
    • 2010-04-12
    • SNU PRECISION CO LTDPAHK HEUI-JAEAHN WOO-JUNG
    • PAHK HEUI-JAEAHN WOO-JUNG
    • G01B11/24G01B11/02G01B11/25
    • G01B11/24
    • The present invention relates to a method for measuring a three-dimensional shape. The method for measuring the three-dimensional shape of an object having a substrate and a solder ball arranged on the substrate, comprises: a center-determining step of obtaining an image of the solder ball and determining the center of the solder ball; an image-acquiring step of forming a sine wave pattern on the object, and acquiring an integrated image containing images of both the upper surface of the substrate and of the solder ball; a phase value determination step of selecting, from within the integrated image, a reference line which is a virtual line passing through the center of the solder ball, extracting the phase value of the portion onto which the sine wave pattern is projected from the center of the solder ball located on the reference line and determining the extracted phase value to be a phase value of the center of the solder ball, and extracting the phase value of the portion onto which the sine wave pattern is projected from the substrate located on the reference line and determining the extracted phase value to be a phase value of the substrate; and a height calculating step of calculating the height from the upper surface of the substrate to the center of the solder ball using the difference between the phase value of the center of the solder ball and the phase value of the substrate.
    • 本发明涉及三维形状的测定方法。 用于测量具有布置在基板上的基板和焊球的物体的三维形状的方法包括:中心确定步骤,获得焊球的图像并确定焊球的中心; 在所述物体上形成正弦波图案的图像获取步骤,以及获取包含所述基板的上表面和所述焊球两者的图像的积分图像; 相位值确定步骤,从集成图像内选择作为穿过焊球中心的虚拟线的参考线,从其中心提取正弦波图案投影到其上的部分的相位值 所述焊球位于所述基准线上,并且将提取的相位值确定为所述焊球的中心的相位值,并且从位于所述参考点上的所述基板提取所述正弦波图案投影到其上的部分的相位值 并将提取的相位值确定为衬底的相位值; 以及高度计算步骤,使用焊料球的中心的相位值和基板的相位值之间的差计算从基板的上表面到焊球的中心的高度。