会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 21. 发明授权
    • Air gap spacer formation
    • 气隙间隔物形成
    • US07741663B2
    • 2010-06-22
    • US12258188
    • 2008-10-24
    • Fred HauseAnthony C. MowryDavid G. FarberMarkus E. Lenski
    • Fred HauseAnthony C. MowryDavid G. FarberMarkus E. Lenski
    • H01L29/772H01L21/336
    • H01L29/6659H01L29/41775H01L29/6653H01L29/6656H01L29/7833Y10S257/90
    • Miniaturized complex transistor devices are formed with reduced leakage and reduced miller capacitance. Embodiments include transistors having reduced capacitance between the gate electrode and source/drain contact, as by utilizing a low-K dielectric constant sidewall spacer material. An embodiment includes forming a gate electrode on a semiconductor substrate, forming a sidewall spacer on the side surfaces of the gate electrode, forming source/drain regions by ion implantation, forming an interlayer dielectric over the gate electrode, sidewall spacers, and substrate, and forming a source/drain contact through the interlayer dielectric. The sidewall spacers and interlayer dielectric are then removed. A dielectric material, such as a low-K dielectric material, is then deposited in the gap between the gate electrode and the source/drain contact so that an air gap is formed, thereby reducing the parasitic “miller” capacitance.
    • 小型化的复合晶体管器件形成有减少的泄漏和减小的磨机电容。 实施例包括通过利用低K介电常数侧壁间隔物材料在栅电极和源极/漏极接触之间具有减小的电容的晶体管。 一个实施例包括在半导体衬底上形成栅电极,在栅电极的侧表面上形成侧壁间隔物,通过离子注入形成源/漏区,在栅电极,侧壁间隔物和衬底上形成层间电介质,以及 通过层间电介质形成源极/漏极接触。 然后去除侧壁间隔物和层间电介质。 然后将诸如低K电介质材料的电介质材料沉积在栅电极和源极/漏极接触之间的间隙中,从而形成气隙,由此减小寄生“铣”电容。
    • 24. 发明授权
    • Spacer formation by poly stack dopant profile design
    • 通过多层掺杂剂分布设计形成间隔物
    • US6159814A
    • 2000-12-12
    • US968444
    • 1997-11-12
    • Mark GardnerFred HauseCharles May
    • Mark GardnerFred HauseCharles May
    • H01L21/28H01L21/336H01L29/78
    • H01L21/28211H01L21/28052H01L21/28176H01L29/6659H01L29/7833
    • A method for forming a semiconductor device to produce graded doping in the source region and the drain region includes the steps of implanting the gate material, usually a polysilicon, with a dopant ion that varies the level of oxide formation on the gate. The dopant ion is driven into undoped polysilicon. Nitrogen ions, may also be implanted in the polysilicon to contain the previously implanted ions. For N-type transistors, typically arsenic is implanted. For P-type transistors, typically boron is implanted. Gates are formed. The gate structure is then oxidized. The oxidation process is controlled to grow a desired thickness of silicon dioxide on the gate. The portion of the gate carrying the dopant grows silicon dioxide either more quickly or more slowly. An isotropic etch can then used to remove a portion of the silicon oxide and form a knob on each sidewall of the gate. A heavy ion implant is then done to convert a portion of the lightly doped source region into a heavily doped region within the source region, and to convert a portion of the lightly doped drain region into a heavily doped region within the drain region. Some of the implanted ions are stopped by the knobs on the gate sidewalls. The regions under the knobs do not have as deep an ion implantation resulting in a shallow region beneath the knob. This forms a graded junction having a specific geometry. The geometry of the interface between the lightly doped region and the heavily doped region in the source region and the drain region depends on the geometry (thickness) of silicon dioxide knobs formed on the sidewall of the gate.
    • 用于形成在源极区域和漏极区域中产生渐变掺杂的半导体器件的方法包括以下步骤:通过改变栅极上的氧化物形成水平的掺杂剂离子注入栅极材料(通常为多晶硅)。 掺杂剂离子被驱入未掺杂的多晶硅。 氮离子也可以注入到多晶硅中以容纳先前注入的离子。 对于N型晶体管,通常植入砷。 对于P型晶体管,通常植入硼。 门形成。 然后将栅极结构氧化。 控制氧化过程以在栅极上生长所需的二氧化硅厚度。 携带掺杂剂的栅极部分会更快或更慢地生长二氧化硅。 然后可以使用各向同性蚀刻去除氧化硅的一部分并在栅极的每个侧壁上形成旋钮。 然后进行重离子注入以将轻掺杂源区的一部分转换为源区内的重掺杂区,并将轻掺杂漏区的一部分转换为漏区内的重掺杂区。 一些注入的离子被栅极侧壁上的旋钮阻挡。 旋钮下面的区域没有深度的离子注入,导致旋钮下方的浅区域。 这形成具有特定几何形状的渐变连接点。 源极区域和漏极区域中的轻掺杂区域和重掺杂区域之间的界面的几何形状取决于形成在栅极侧壁上的二氧化硅旋钮的几何形状(厚度)。
    • 25. 发明授权
    • Semiconductor substrate having extended scribe line test structure and
method of fabrication thereof
    • 具有延长的划片线测试结构的半导体衬底及其制造方法
    • US6027859A
    • 2000-02-22
    • US992234
    • 1997-12-17
    • Robert DawsonMark W. MichaelFred Hause
    • Robert DawsonMark W. MichaelFred Hause
    • G03F7/20
    • G03F7/70633G03F7/70475
    • The present invention generally provides a semiconductor substrate having an extended test structure and a method of fabricating such a substrate. A method of forming an extended test structure on a semiconductor substrate, consistent with one embodiment of the invention, includes forming a first test structure pattern over a first portion of the substrate and forming a second test structure pattern of the second portion of the substrate which partially overlaps the first portion of the substrate such that the first test structure pattern and the second test structure overlap. The first test structure pattern may be formed using, for example, reticle and a second test structure pattern may be formed using the same reticle. The first and second test structure patterns may, for example, be formed in a scribe line of the substrate.
    • 本发明通常提供具有扩展测试结构的半导体衬底和制造这种衬底的方法。 根据本发明的一个实施例,在半导体衬底上形成扩展测试结构的方法包括在衬底的第一部分上形成第一测试结构图案,并形成衬底的第二部分的第二测试结构图案, 部分地与衬底的第一部分重叠,使得第一测试结构图案和第二测试结构重叠。 可以使用例如掩模版形成第一测试结构图案,并且可以使用相同的掩模版形成第二测试结构图案。 第一和第二测试结构图案可以例如形成在基板的划线中。
    • 27. 发明授权
    • Thyristor semiconductor device and method of manufacture
    • 晶闸管半导体器件及其制造方法
    • US07804107B1
    • 2010-09-28
    • US11906619
    • 2007-10-03
    • Andrew E. HorchFred Hause
    • Andrew E. HorchFred Hause
    • H01L31/111
    • H01L21/84H01L21/823814H01L21/823835H01L27/1027H01L27/1203H01L29/66378
    • In a method of processing a semiconductor device, a silicide-blocking layer may be formed over a semiconductor material. After defining the silicide-blocking layer, impurities may be implanted into portions of the semiconductor material as defined by the silicide-blocking layer. After the implant, silicide may be formed in a surface region of the semiconductor material as permitted by the silicide-blocking layer. Regions of the impurity implant may comprise boundaries that are related to the outline of the silicide formed thereover. In a further embodiment, the implant may define a base region to a thyristor device. The implant may be performed with an angle of incidence to extend portions of the base region beneath a peripheral edge of the blocking mask. Next, an anode-emitter region may be formed using an implant of a substantially orthogonal angle of incidence and self-aligned to the mask. Epitaxial material may then be formed selectively over exposed regions of the semiconductor material as defined by the silicide-blocking mask. Silicide might also be formed after select exposed regions as defined by the silicide-blocking mask. The silicide-blocking mask may thus be used for alignment of implants, and also for defining epitaxial and silicide alignments.
    • 在半导体器件的处理方法中,可以在半导体材料上形成硅化物阻挡层。 在限定硅化物阻挡层之后,可以将杂质注入半导体材料的部分,如由硅化物阻挡层所限定的。 在植入之后,硅化物可以形成在半导体材料的表面区域,如硅化物阻挡层所允许的。 杂质植入物的区域可以包括与其上形成的硅化物的轮廓相关的边界。 在另一实施例中,植入物可以限定到晶闸管器件的基极区域。 可以以入射角来执行植入物,以将阻挡掩模的外围边缘下方的基底区域的部分延伸。 接下来,可以使用基本上正交的入射角并与掩模自对准的植入物形成阳极 - 发射极区域。 然后可以在由硅化物阻挡掩模限定的半导体材料的暴露区域上选择性地形成外延材料。 也可以在由硅化物阻挡掩模定义的选择的暴露区域之后形成硅化物。 硅化物阻挡掩模因此可用于植入物的对准,并且还用于限定外延和硅化物对准。