会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Method of integrating Ldd implantation for CMOS device fabrication
    • 整合Ldd植入用于CMOS器件制造的方法
    • US06043533A
    • 2000-03-28
    • US944377
    • 1997-10-06
    • Mark I. GardnerFred HauseRobert Paiz
    • Mark I. GardnerFred HauseRobert Paiz
    • H01L21/8238H01L29/76H01L29/94H01L31/062H01L31/113
    • H01L21/823814H01L21/823807
    • A method of integrating lightly doped drain implantation for complementary metal oxide semiconductor (CMOS) device fabrication includes providing a semiconductor substrate having a p-well region and an n-well region. A patterned gate oxide and gate electrode are formed on each of the p-well region and the n-well region. One of either the p-well region or the n-well region is masked with a patterned photoresist having a prescribed thickness, leaving a non-masked region exposed. Ions are then implanted to form desired p-type lightly doped drain (Pldd) regions in the n-well region, including Pldd regions adjacent to edges of the gate electrode in the n-well region. Lastly, ions are implanted to form desired n-type lightly doped drain (Nldd) regions in the p-well region, including Nldd regions adjacent to edges of the gate electrode in the p-well region, the Pldd and Nldd regions thus being formed with the use of only a single ion implantation masking step. A semiconductor substrate and an integrated circuit are also disclosed.
    • 用于互补金属氧化物半导体(CMOS)器件制造的轻掺杂漏极注入的集成方法包括提供具有p阱区域和n-阱区域的半导体衬底。 在p阱区域和n阱区域中的每一个上形成图案化栅极氧化物和栅极电极。 使用具有规定厚度的图案化光致抗蚀剂掩蔽p阱区域或n阱区域中的一个,留下未被掩蔽的区域。 然后植入离子以在n阱区域中形成期望的p型轻掺杂漏极(Pldd)区域,包括与n阱区域中的栅电极的边缘相邻的Pldd区域。 最后,注入离子以在p阱区域中形成期望的n型轻掺杂漏极(Nldd)区域,包括与p阱区域中的栅电极的边缘相邻的Nldd区域,从而形成Pldd和Nldd区域 仅使用单个离子注入掩模步骤。 还公开了半导体衬底和集成电路。
    • 9. 发明申请
    • AIR GAP SPACER FORMATION
    • 空气隙间隙形成
    • US20100102363A1
    • 2010-04-29
    • US12258188
    • 2008-10-24
    • Fred HauseAnthony C. MowryDavid G. FarberMarkus E. Lenski
    • Fred HauseAnthony C. MowryDavid G. FarberMarkus E. Lenski
    • H01L47/00H01L21/336
    • H01L29/6659H01L29/41775H01L29/6653H01L29/6656H01L29/7833Y10S257/90
    • Miniaturized complex transistor devices are formed with reduced leakage and reduced miller capacitance. Embodiments include transistors having reduced capacitance between the gate electrode and source/drain contact, as by utilizing a low-K dielectric constant sidewall spacer material. An embodiment includes forming a gate electrode on a semiconductor substrate, forming a sidewall spacer on the side surfaces of the gate electrode, forming source/drain regions by ion implantation, forming an interlayer dielectric over the gate electrode, sidewall spacers, and substrate, and forming a source/drain contact through the interlayer dielectric. The sidewall spacers and interlayer dielectric are then removed. A dielectric material, such as a low-K dielectric material, is then deposited in the gap between the gate electrode and the source/drain contact so that an air gap is formed, thereby reducing the parasitic “miller” capacitance.
    • 小型化的复合晶体管器件形成有减少的泄漏和减小的磨机电容。 实施例包括通过利用低K介电常数侧壁间隔物材料在栅电极和源极/漏极接触之间具有减小的电容的晶体管。 一个实施例包括在半导体衬底上形成栅电极,在栅电极的侧表面上形成侧壁间隔物,通过离子注入形成源/漏区,在栅电极,侧壁间隔物和衬底上形成层间电介质,以及 通过层间电介质形成源/漏接触。 然后去除侧壁间隔物和层间电介质。 然后将诸如低K电介质材料的电介质材料沉积在栅电极和源极/漏极接触之间的间隙中,从而形成气隙,由此减小寄生“铣”电容。
    • 10. 发明授权
    • Method of manufacturing a thyristor semiconductor device
    • 晶闸管半导体器件的制造方法
    • US07279367B1
    • 2007-10-09
    • US11007510
    • 2004-12-07
    • Andrew E. HorchFred Hause
    • Andrew E. HorchFred Hause
    • H01L21/332
    • H01L21/84H01L21/823814H01L21/823835H01L27/1027H01L27/1203H01L29/66378
    • In a method of processing a semiconductor device, a silicide-blocking layer may be formed over a semiconductor material. After defining the silicide-blocking layer, impurities may be implanted into portions of the semiconductor material as defined by the silicide-blocking layer. After the implant, silicide may be formed in a surface region of the semiconductor material as permitted by the silicide-blocking layer. Regions of the impurity implant may comprise boundaries that are related to the outline of the silicide formed thereover. In a further embodiment, the implant may define a base region to a thyristor device. The implant may be performed with an angle of incidence to extend portions of the base region beneath a peripheral edge of the blocking mask. Next, an anode-emitter region may be formed using an implant of a substantially orthogonal angle of incidence and self-aligned to the mask. Epitaxial material may then be formed selectively over exposed regions of the semiconductor material as defined by the silicide-blocking mask. Silicide might also be formed after select exposed regions as defined by the silicide-blocking mask. The silicide-blocking mask may thus be used for alignment of implants, and also for defining epitaxial and silicide alignments.
    • 在半导体器件的处理方法中,可以在半导体材料上形成硅化物阻挡层。 在限定硅化物阻挡层之后,可以将杂质注入半导体材料的部分,如由硅化物阻挡层所限定的。 在植入之后,硅化物可以形成在半导体材料的表面区域,如硅化物阻挡层所允许的。 杂质植入物的区域可以包括与其上形成的硅化物的轮廓相关的边界。 在另一实施例中,植入物可以限定到晶闸管器件的基极区域。 可以以入射角来执行植入物,以将阻挡掩模的外围边缘下方的基底区域的部分延伸。 接下来,可以使用基本上正交的入射角并与掩模自对准的植入物形成阳极 - 发射极区域。 然后可以在由硅化物阻挡掩模限定的半导体材料的暴露区域上选择性地形成外延材料。 也可以在由硅化物阻挡掩模定义的选择的暴露区域之后形成硅化物。 硅化物阻挡掩模因此可用于植入物的对准,并且还用于限定外延和硅化物对准。