会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明授权
    • Selective copper encapsulation layer deposition
    • 选择性铜包层沉积
    • US08415252B2
    • 2013-04-09
    • US12683857
    • 2010-01-07
    • Tien-Jen ChengAbhishek DubeZhengwen LiHuilong Zhu
    • Tien-Jen ChengAbhishek DubeZhengwen LiHuilong Zhu
    • H01L21/44
    • H01L21/76834H01L21/76826H01L21/76832H05K3/282H05K3/388H05K3/4682
    • A metal interconnect structure provides high adhesive strength between copper atoms in a copper-containing structure and a self-aligned copper encapsulation layer, which is selectively deposited only on exposed copper surfaces. A lower level metal interconnect structure comprises a first dielectric material layer and a copper-containing structure embedded in a lower metallic liner. After a planarization process that forms the copper-containing structure, a material that forms Cu—S bonds with exposed surfaces of the copper-containing structure is applied to the surface of the copper-containing structure. The material is selectively deposited only on exposed Cu surfaces, thereby forming a self-aligned copper encapsulation layer, and provides a high adhesion strength to the copper surface underneath. A dielectric cap layer and an upper level metal interconnect structure can be subsequently formed on the copper encapsulation layer.
    • 金属互连结构在含铜结构中的铜原子和自对准铜封装层之间提供高粘合强度,其仅选择性地沉积在暴露的铜表面上。 下层金属互连结构包括第一介电材料层和嵌入在下金属衬里中的含铜结构。 在形成含铜结构的平坦化工艺之后,将含铜结构体的露出表面形成Cu-S键的材料施加到含铜结构体的表面。 该材料仅选择性地沉积在暴露的Cu表面上,从而形成自对准的铜封装层,并且对下面的铜表面提供高粘附强度。 随后可以在铜封装层上形成电介质盖层和上层金属互连结构。
    • 23. 发明授权
    • Cavity-free interface between extension regions and embedded silicon-carbon alloy source/drain regions
    • 扩展区域和嵌入式硅 - 碳合金源极/漏极区域之间的无空隙界面
    • US08394712B2
    • 2013-03-12
    • US13101260
    • 2011-05-05
    • Abhishek DubeViorel Ontalus
    • Abhishek DubeViorel Ontalus
    • H01L21/20
    • H01L21/823481H01L21/823412H01L21/823807H01L21/823878H01L29/665H01L29/66545H01L29/66628H01L29/66636H01L29/7848
    • A gate stack is formed on a silicon substrate, and source/drain extension regions are formed around the gate stack. A dielectric spacer is formed around the gate stack. A pair of trenches is formed around the gate stack and the dielectric spacer by an etch so that sidewalls of the source/drain extension regions are exposed. Within each trench, an n-doped silicon liner is deposited on the sidewalls of the trenches by a first selective epitaxy process so that the interface between the dielectric spacer and the source/drain extension region is covered. Within each trench, an n-doped single crystalline silicon-carbon alloy is subsequently deposited to fill the trench by a second selective epitaxy process. A combination of an n-doped single crystalline silicon liner and an n-doped single crystalline silicon-carbon alloy functions as embedded source/drain regions of an n-type field effect transistor (NFET), which applies a tensile stress to the channel of the transistor.
    • 在硅衬底上形成栅极叠层,并且在栅极堆叠周围形成源极/漏极延伸区域。 在栅极堆叠周围形成介电隔离物。 通过蚀刻在栅极堆叠和电介质间隔物周围形成一对沟槽,使得源极/漏极延伸区域的侧壁被暴露。 在每个沟槽内,通过第一选择性外延工艺将n掺杂硅衬垫沉积在沟槽的侧壁上,以便覆盖介质间隔物与源极/漏极延伸区之间的界面。 在每个沟槽内,随后沉积n掺杂的单晶硅 - 碳合金以通过第二选择性外延工艺填充沟槽。 n掺杂单晶硅衬垫和n掺杂单晶硅碳合金的组合用作n型场效应晶体管(NFET)的嵌入式源极/漏极区域,其对该沟道施加拉伸应力 晶体管。
    • 26. 发明授权
    • Bi-layer nFET embedded stressor element and integration to enhance drive current
    • 双层nFET嵌入式应力元件并集成增强驱动电流
    • US08035141B2
    • 2011-10-11
    • US12607104
    • 2009-10-28
    • Kevin K. ChanAbhishek DubeJinghong LiViorel OntalusZhengmao Zhu
    • Kevin K. ChanAbhishek DubeJinghong LiViorel OntalusZhengmao Zhu
    • H01L29/76
    • H01L29/7848H01L29/165H01L29/66636H01L29/7834Y10S257/90Y10S257/902Y10S257/903
    • A semiconductor structure including a bi-layer nFET embedded stressor element is disclosed. The bi-layer nFET embedded stressor element can be integrated into any CMOS process flow. The bi-layer nFET embedded stressor element includes an implant damaged free first layer of a first epitaxy semiconductor material having a lattice constant that is different from a lattice constant of a semiconductor substrate and imparts a tensile strain in a device channel of an nFET gate stack. Typically, and when the semiconductor is composed of silicon, the first layer of the bi-layer nFET embedded stressor element is composed of Si:C. The bi-layer nFET embedded stressor element further includes a second layer of a second epitaxy semiconductor material that has a lower resistance to dopant diffusion than the first epitaxy semiconductor material. Typically, and when the semiconductor is composed of silicon, the second layer of the bi-layer nFET embedded stressor element is composed of silicon. Only the second layer of the bi-layer nFET embedded stressor element includes the implanted source/drain regions.
    • 公开了一种包括双层nFET嵌入式应力元件的半导体结构。 双层nFET嵌入式应力元件可以集成到任何CMOS工艺流程中。 双层nFET嵌入式应力元件包括具有不同于半导体衬底的晶格常数的晶格常数的第一外延半导体材料的免费第一层的植入物,并且在nFET栅极堆叠的器件沟道中施加拉伸应变 。 通常,当半导体由硅组成时,双层nFET嵌入的应力元件的第一层由Si:C组成。 双层nFET嵌入式应力元件还包括具有比第一外延半导体材料更低的掺杂剂扩散阻力的第二外延半导体材料层。 通常,当半导体由硅组成时,双层nFET嵌入的应力元件的第二层由硅组成。 双层nFET嵌入式应力元件的第二层仅包括注入的源极/漏极区域。
    • 28. 发明授权
    • Structure and method for increasing strain in a device
    • 增加器件应变的结构和方法
    • US08551845B2
    • 2013-10-08
    • US12886903
    • 2010-09-21
    • Kevin K. ChanAbhishek DubeViorel C. Ontalus
    • Kevin K. ChanAbhishek DubeViorel C. Ontalus
    • H01L21/336
    • H01L29/7847H01L21/26506H01L21/26566H01L21/26593H01L29/165H01L29/66636H01L29/78H01L29/7848
    • A method and structure are disclosed for increasing strain in a device, specifically an n-type field effect transistor (NFET) complementary metal-oxide-semiconductor (CMOS) device. Embodiments of this invention include growing an epitaxial layer, performing a cold carbon or cluster carbon pre-amorphization implantation to implant substitutional carbon into the epitaxial layer, forming a tensile cap over the epitaxial layer, and then annealing to recrystallize the amorphous layer to create a stress memorization technique (SMT) effect. The epitaxial layer will therefore include substitutional carbon and have a memorized tensile stress induced by the SMT. Embodiments of this invention can also include a lower epitaxial layer under the epitaxial layer, the lower epitaxial layer comprising for example, a silicon carbon phosphorous (SiCP) layer.
    • 公开了用于增加器件中应变的方法和结构,特别是n型场效应晶体管(NFET)互补金属氧化物半导体(CMOS)器件。 本发明的实施例包括生长外延层,进行冷碳或簇碳预非晶化注入以将取代碳注入到外延层中,在外延层上形成拉伸帽,然后退火以使非晶层重结晶以产生 应力记忆技术(SMT)效应。 因此,外延层将包括取代碳并具有由SMT引起的记忆拉伸应力。 本发明的实施例还可以包括在外延层下面的下部外延层,下部外延层包括例如硅碳磷(SiCP)层。
    • 29. 发明授权
    • Method for growing strain-inducing materials in CMOS circuits in a gate first flow
    • 在栅极第一流中在CMOS电路中增长应变诱导材料的方法
    • US08426265B2
    • 2013-04-23
    • US12938457
    • 2010-11-03
    • Bo BaiLinda BlackAbhishek DubeJudson R. HoltViorel C. OntalusKathryn T. SchonenbergMatthew W. StokerKeith H. Tabakman
    • Bo BaiLinda BlackAbhishek DubeJudson R. HoltViorel C. OntalusKathryn T. SchonenbergMatthew W. StokerKeith H. Tabakman
    • H01L21/8238
    • H01L21/823807H01L21/823828
    • A method of manufacturing a complementary metal oxide semiconductor (CMOS) circuit, in which the method includes a reactive ion etch (RIE) of a CMOS circuit substrate that forms recesses, the CMOS circuit substrate including: an n-type field effect transistor (n-FET) region; a p-type field effect transistor (p-FET) region; an isolation region disposed between the n-FET and p-FET regions; and a gate wire comprising an n-FET gate, a p-FET gate, and gate material extending transversely from the n-FET gate across the isolation region to the p-FET gate, in which the recesses are formed adjacent to sidewalls of a reduced thickness; growing silicon germanium (SiGe) in the recesses; depositing a thin insulator layer on the CMOS circuit substrate; masking at least the p-FET region; removing the thin insulator layer from an unmasked n-FET region and an unmasked portion of the isolation region; etching the CMOS circuit substrate with hydrogen chloride (HCl) to remove the SiGe from the recesses in the n-FET region; and growing silicon carbon (SiC) in the exposed recesses.
    • 一种制造互补金属氧化物半导体(CMOS)电路的方法,其中所述方法包括形成凹部的CMOS电路基板的反应离子蚀刻(RIE),所述CMOS电路基板包括:n型场效应晶体管(n -FET)区域; p型场效应晶体管(p-FET)区域; 设置在n-FET和p-FET区之间的隔离区; 以及栅极线,其包括n-FET栅极,p-FET栅极和栅极材料,栅极材料从跨越隔离区域的n-FET栅极横向延伸到p-FET栅极,其中凹部形成为邻近于 厚度减小 在凹槽中生长硅锗(SiGe); 在CMOS电路衬底上沉积薄的绝缘体层; 至少掩蔽p-FET区域; 从未掩蔽的n-FET区域和所述隔离区域的未屏蔽部分去除所述薄绝缘体层; 用氯化氢(HCl)蚀刻CMOS电路衬底以从n-FET区域中的凹槽去除SiGe; 并在暴露的凹槽中生长硅碳(SiC)。