会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Signaling with Superimposed Clock and Data Signals
    • 信号与叠加的时钟和数据信号
    • US20080297213A1
    • 2008-12-04
    • US12128584
    • 2008-05-28
    • Aliazam AbbasfarAmir AmirkhanyBruno W. Garlepp
    • Aliazam AbbasfarAmir AmirkhanyBruno W. Garlepp
    • H03L7/06
    • H03L7/085H03L7/07H03L7/087H04L7/0008H04L7/0025H04L7/033
    • A data receiver circuit includes an interface to receive an input signal that includes a data signal and a clock signal superimposed on the data signal. The data signal has an associated symbol rate and an associated symbol period equal to the reciprocal of the associated symbol rate. The clock signal has a frequency N times the associated symbol rate, where N is an integer. A phase-locked loop (PLL) coupled to the interface extracts the clock signal from the input signal to provide an extracted clock signal. A phase interpolator adjusts the phase of the extracted clock signal to provide a phase-adjusted extracted clock signal. A sampling circuit samples the data signal at a sampling point. The sampling circuit is synchronized to the phase-adjusted extracted clock signal.
    • 数据接收器电路包括接收包括数据信号和叠加在数据信号上的时钟信号的输入信号的接口。 数据信号具有相关联的符号率和相关联的符号周期等于相关联符号率的倒数。 时钟信号具有相关符号率N倍的频率,其中N是整数。 耦合到接口的锁相环(PLL)从输入信号提取时钟信号以提供提取的时钟信号。 相位内插器调整提取的时钟信号的相位以提供相位调整的提取的时钟信号。 采样电路在采样点采样数据信号。 采样电路与相位调整的提取时钟信号同步。
    • 12. 发明授权
    • Signaling with superimposed clock and data signals
    • 信号叠加时钟和数据信号
    • US08149972B2
    • 2012-04-03
    • US12128584
    • 2008-05-28
    • Aliazam AbbasfarAmir AmirkhanyBruno W. Garlepp
    • Aliazam AbbasfarAmir AmirkhanyBruno W. Garlepp
    • H04L7/00
    • H03L7/085H03L7/07H03L7/087H04L7/0008H04L7/0025H04L7/033
    • A data receiver circuit includes an interface to receive an input signal that includes a data signal and a clock signal superimposed on the data signal. The data signal has an associated symbol rate and an associated symbol period equal to the reciprocal of the associated symbol rate. The clock signal has a frequency N times the associated symbol rate, where N is an integer. A phase-locked loop (PLL) coupled to the interface extracts the clock signal from the input signal to provide an extracted clock signal. A phase interpolator adjusts the phase of the extracted clock signal to provide a phase-adjusted extracted clock signal. A sampling circuit samples the data signal at a sampling point. The sampling circuit is synchronized to the phase-adjusted extracted clock signal.
    • 数据接收器电路包括接收包括数据信号和叠加在数据信号上的时钟信号的输入信号的接口。 数据信号具有相关联的符号率和相关联的符号周期等于相关联符号率的倒数。 时钟信号具有相关符号率N倍的频率,其中N是整数。 耦合到接口的锁相环(PLL)从输入信号提取时钟信号以提供提取的时钟信号。 相位内插器调整提取的时钟信号的相位以提供相位调整的提取的时钟信号。 采样电路在采样点采样数据信号。 采样电路与相位调整的提取时钟信号同步。
    • 19. 发明授权
    • High resolution output driver
    • 高分辨率输出驱动
    • US08531206B2
    • 2013-09-10
    • US13391383
    • 2010-09-14
    • Amir AmirkhanyChaofeng HuangKambiz KavianiWayne D. DettloffKun-Yung Chang
    • Amir AmirkhanyChaofeng HuangKambiz KavianiWayne D. DettloffKun-Yung Chang
    • H03K17/16
    • H03K19/0005H03K19/017581H03M1/1061H03M1/745H04L25/0278H04L25/0288H04L25/03343
    • High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
    • 具有相对较少数量的子驱动器分支或切片的高分辨率输出驱动器,每个子驱动器分支或切片具有显着大于量化步长的标称阻抗,并且通过显着小于量化步长的阻抗步长递增地彼此不同。 在一个实现中,这种“差分”或“不均匀”子驱动器切片实现n选择k均衡器的相应元件,每个这样的差分子驱动器切片由均匀元件阻抗校准DAC实现。 在另一实施方式中,均匀分片均衡器的每个分量由差分片阻抗校准DAC实现,并且在又一实现中,差分片均衡器的每个分量由差分片阻抗校准DAC实现。 在一组额外的实施方案中,均衡和阻抗校准功能在各个并行的驱动器分支组中实现,而不是分层实现中嵌套的“DAC内的DAC”布置。 通过这种双边安排,避免了均衡器和校准器量化的乘法,从而降低了满足指定范围和分辨率所需的副驱动器片的总数。
    • 20. 发明申请
    • HIGH RESOLUTION OUTPUT DRIVER
    • 高分辨率输出驱动器
    • US20120147944A1
    • 2012-06-14
    • US13391383
    • 2010-09-14
    • Amir AmirkhanyChaofeng HuangKambiz KavianiWayne D. DettloofKun-Yung Chang
    • Amir AmirkhanyChaofeng HuangKambiz KavianiWayne D. DettloofKun-Yung Chang
    • H04L27/01
    • H03K19/0005H03K19/017581H03M1/1061H03M1/745H04L25/0278H04L25/0288H04L25/03343
    • High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC. In an additional set of implementations, equalization and impedance calibration functions are implemented bilaterally in respective parallel sets of driver branches, rather than in the nested “DAC within a DAC” arrangement of the hierarchical implementations. Through such bilateral arrangement, multiplication of the equalizer and calibrator quantizations is avoided, thereby lowering the total number of sub-driver slices required to meet the specified ranges and resolutions.
    • 具有相对较少数量的子驱动器分支或切片的高分辨率输出驱动器,每个子驱动器分支或切片具有显着大于量化步长的标称阻抗,并且通过显着小于量化步长的阻抗步长递增地彼此不同。 在一个实现中,这种“差分”或“不均匀”子驱动器切片实现n选择k均衡器的相应元件,每个这样的差分子驱动器切片由均匀元件阻抗校准DAC实现。 在另一实施方式中,均匀分片均衡器的每个分量由差分片阻抗校准DAC实现,并且在又一实现中,差分片均衡器的每个分量由差分片阻抗校准DAC实现。 在一组额外的实施方案中,均衡和阻抗校准功能在各个并行的驱动器分支组中实现,而不是分层实现中嵌套的“DAC内的DAC”布置。 通过这种双边安排,避免了均衡器和校准器量化的乘法,从而降低了满足指定范围和分辨率所需的副驱动器片的总数。