会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Semiconductor Light Emitting Device
    • 半导体发光装置
    • US20080073659A1
    • 2008-03-27
    • US11662097
    • 2005-09-07
    • Kentaro TamuraKen Nakahara
    • Kentaro TamuraKen Nakahara
    • H01L33/00
    • H01L33/42H01L33/32H01L33/405
    • A semiconductor light emitting device is provided, in which the light emitting efficiency of a LED is improved. A semiconductor light emitting device (11) includes a light emitting layer (16) made of a GaN-based semiconductor sandwiched with an n-type GaN-based semiconductor layer (17) and a p-type GaN-based semiconductor layer (15), and a ZnO-based or an ITO transparent electrode layer (14). Further, a value of an equation represented by 3t/(A/π)1/2−3(t/(A/π)1/2)2+(t/(A/π)1/2)3 is 0.1 or more, where a thickness of the transparent electrode layer is represented by t and an area of the light emitting layer (light emitting area) of the light emitting device (11) is represented by A. The light emitting efficiency is improved using the transparent electrode layer (14) having an optimum thickness to the light emitting area.
    • 提供了一种提高了LED的发光效率的半导体发光器件。 半导体发光器件(11)包括由夹在n型GaN基半导体层(17)和p型GaN基半导体层(15)之间的GaN基半导体制成的发光层(16) ,以及ZnO系或ITO透明电极层(14)。 此外,由3t /(A / pi)×1 / 3-3(t /(A / pi)1/2)表示的等式的值 2 +(t /(A / pi)1/2)3 3以上,透明电极层的厚度为t 并且发光器件(11)的发光层(发光区域)的面积由A表示。使用对于发光区域具有最佳厚度的透明电极层(14)来提高发光效率。
    • 14. 发明授权
    • Semiconductor light emitting device and method for manufacturing the same
    • 半导体发光器件及其制造方法
    • US08124985B2
    • 2012-02-28
    • US11815759
    • 2006-02-07
    • Mitsuhiko SakaiAtsushi YamaguchiKen NakaharaMasayuki SonobeTsuyoshi Tsutsui
    • Mitsuhiko SakaiAtsushi YamaguchiKen NakaharaMasayuki SonobeTsuyoshi Tsutsui
    • H01L27/15H01L29/26H01L31/12H01L33/00
    • H01L33/20H01L33/0079H01L33/60
    • There are provided a nitride semiconductor light emitting device having a structure enabling enhanced external quantum efficiency by effectively taking out light which is apt to repeat total reflection within a semiconductor lamination portion and a substrate and attenuate, and a method for manufacturing the same. A semiconductor lamination portion (6) including a first conductivity type layer and a second conductivity type layer, made of nitride semiconductor, is provided on a surface of the substrate (1) made of, for example, sapphire or the like. A first electrode (for example, p-side electrode (8)) is provided electrically connected to the first conductivity type layer (for example, p-type layer (5)) on a surface side of the semiconductor lamination portion (6), and a second electrode (for example, n-side electrode (9)) is provided electrically connected to the second conductivity type layer (for example, n-type layer (3)). A part of the semiconductor lamination portion (6) is removed at a surrounding region of a chip of the semiconductor lamination portion (6) by etching so that column portions (6a) stand side by side by leaving the semiconductor lamination portion without etching, and the n-type layer (3) expose around the column portions (6a).
    • 提供了具有通过有效地取出在半导体层叠部分和衬底内易于重复全反射的光而衰减的能够提高外部量子效率的结构的氮化物半导体发光器件及其制造方法。 在由例如蓝宝石等制成的基板(1)的表面上设置包括由氮化物半导体构成的第一导电型层和第二导电型层的半导体层叠部(6)。 第一电极(例如,p侧电极(8))在半导体层叠部分(6)的表面侧电连接到第一导电类型层(例如,p型层(5)), 并且第二电极(例如,n侧电极(9))被设置为电连接到第二导电类型层(例如,n型层(3))。 通过蚀刻在半导体层叠部(6)的芯片的周围区域去除半导体层叠部(6)的一部分,使得柱部(6a)不经蚀刻而离开半导体层叠部而并排放置,并且 n型层(3)围绕柱部(6a)露出。
    • 15. 发明申请
    • IMAGING DEVICE
    • 成像装置
    • US20110181765A1
    • 2011-07-28
    • US13010276
    • 2011-01-20
    • Ken NAKAHARA
    • Ken NAKAHARA
    • H04N5/335
    • H04N9/045H01L27/14643
    • A circuit unit is formed on a supporting member, and a solid state imaging element is formed on the circuit unit. Also, a lens mechanism is provided on a front surface of the solid state imaging element. The solid state imaging element, the circuit unit and the lens mechanism are mounted in a frame body. In addition, photoelectric conversion elements are attached to the outside of the frame body. Each of the photoelectric conversion elements is configured to have almost no light reception sensitivity to the light wavelength region of more than 300 nm and have sensitivity to the light wavelength region of 300 nm or less. The photoelectric conversion element thus configured can sense particularly flames, electric sparks and the like among ultraviolet light.
    • 电路单元形成在支撑构件上,并且固态成像元件形成在电路单元上。 此外,在固态成像元件的前表面上设置透镜机构。 固态成像元件,电路单元和透镜机构安装在框体中。 此外,光电转换元件附接到框体的外侧。 每个光电转换元件被配置为对大于300nm的光波长区域几乎没有光接收灵敏度,并且对300nm以下的光波长区域具有灵敏度。 这样构成的光电转换元件可以感知紫外光中的特别是火焰,电火花等。
    • 16. 发明授权
    • Semiconductor light emitting element
    • 半导体发光元件
    • US07906791B2
    • 2011-03-15
    • US11916868
    • 2006-03-03
    • Ken Nakahara
    • Ken Nakahara
    • H01L33/00
    • H01L33/20H01L33/38H01L33/42H01L2933/0083
    • Light extraction efficiency of a semiconductor light-emitting element is improved. A buffer layer, an n-type GaN layer, an InGaN emission layer, and a p-type GaN layer are laminated on a sapphire substrate in a semiconductor light-emitting element. A ZnO layer functioning as a transparent electrode is provided on the p-type GaN layer and concave portions are formed on a surface of the ZnO layer at two-dimensional periodic intervals. If a wavelength of light from the InGaN emission layer in the air is λ, an index of refraction of the ZnO layer at the wavelength λ is nzλ, and a total reflection angle at an interface between the ZnO layer and a medium in contact therewith is θz, a periodic interval Lz between adjacent concave portions is set in a range of λ/nzλ≦Lz≦λ/(nzλ×(1−sin θz)).
    • 提高了半导体发光元件的光提取效率。 在半导体发光元件的蓝宝石衬底上层叠缓冲层,n型GaN层,InGaN发射层和p型GaN层。 在p型GaN层上设置有作为透明电极的ZnO层,在ZnO层的表面上以二维周期的间隔形成凹部。 如果来自空气中的InGaN发射层的光的波长为λ,则ZnO层在波长λ处的折射率为nzλ,ZnO层与与其接触的介质的界面处的全反射角为 相邻凹部之间的周期性间隔Lz设定在λ/nzλ< ll; Lz< ll;λ/(nzλ×(1-sin& tt; z))的范围内。
    • 17. 发明授权
    • Gallium nitride semiconductor light emitting element
    • 氮化镓半导体发光元件
    • US07872269B2
    • 2011-01-18
    • US12085836
    • 2006-11-29
    • Ken Nakahara
    • Ken Nakahara
    • H01L33/00
    • H01S5/34333B82Y20/00H01L21/0242H01L21/02433H01L21/0254H01L21/02609H01L33/007H01L33/16H01S5/22H01S5/3202H01S5/3216
    • Provided is a gallium nitride semiconductor light emitting element capable of stabilizing a drive voltage by reducing carrier depletion attributable to spontaneous polarization and piezo polarization generated at the interface between an AlGaN semiconductor layer and a GaN semiconductor layer.A gallium nitride semiconductor crystal 2 including a light emitting region is formed on the R plane of a sapphire substrate 1. In addition, in another constitution, a gallium nitride semiconductor crystal 2 is formed on the A plane of a GaN substrate 3 or on the M plane of a GaN substrate 4. The growth surface of these gallium nitride semiconductor crystals 2 are not an N (nitrogen) polar face or a Ga polar face but are non-polar faces. This can decrease the strength of an electric field caused by spontaneous polarization and piezo polarization generated at the interface of GaN/AlGaN at the p side. Thus, carrier depletion can be avoided.
    • 提供一种氮化镓半导体发光元件,其能够通过减少归因于在AlGaN半导体层和GaN半导体层之间的界面处产生的自发极化和压电极化的载流子耗尽来稳定驱动电压。 在蓝宝石衬底1的R平面上形成包括发光区域的氮化镓半导体晶体2.此外,在另一构造中,在GaN衬底3的A平面上或在GaN衬底3的A平面上形成氮化镓半导体晶体2 这些氮化镓半导体晶体2的生长面不是N(氮)极面或Ga极性面,而是非极性面。 这可以降低在p侧的GaN / AlGaN界面处产生的自发极化和压电极化引起的电场的强度。 因此,可以避免载体耗尽。