会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • 半導体集積回路装置
    • 半导体集成电路设备
    • WO2016002508A1
    • 2016-01-07
    • PCT/JP2015/067370
    • 2015-06-16
    • 富士電機株式会社
    • 山路 将晴
    • H01L27/08H01L21/76H01L21/822H01L21/8234H01L27/04H01L27/088H02M3/155H02M7/48
    • H03K19/018521H01L21/76H01L21/823892H01L27/082H01L27/092H01L27/0922H01L29/0649H01L29/1095H01L29/7393H01L29/861H02M7/003H03K17/567
    •  n型ウエル領域(3)には、Vs電位領域(81)およびH-VDD電位領域(82)が配置され、外周に沿って環状に、n型ウエル領域(3)内のVs電位領域(81)およびH-VDD電位領域(82)と、耐圧領域であるn - 型ウエル領域(4)とを接合分離するp - 型分離領域(53)が配置されている。n - 型ウエル領域(4)は、n型ウエル領域(3)の周囲を囲み、GNDの電位に固定されたp型ウエル領域(5)に囲まれている。p - 型分離領域(53)よりも内側に、H-VDDの電位に固定された第3高濃度領域(54)および第3ピックアップ電極(55)が配置される。p - 型分離領域(53)よりも外側に、p - 型分離領域(53)の外周に沿って、H-VDDの電位に固定された第2高濃度領域(51)および第2ピックアップ電極(52)が配置される。このようにすることで、半導体集積回路装置の誤動作や破壊を防止することができる。
    • 在n型阱区(3)内布置有Vs电势区(81)和H-VDD势区(82),以及在Vs电位之间实现结隔离的p型隔离区(53) n型阱区域(3)内的区域(81)和H-VDD电势区域(82)以及充当电压耐受区域的n型阱区域(4)沿着 n型阱区(3)形成环。 n型阱区(4)包围n型阱区(3),并被固定在接地电位的p型阱区(5)环绕。 固定在H-VDD电位的第三拾取电极(55)和第三高浓度区域(54)布置在p型隔离区域(53)的内侧,第二拾取电极(52)和第二高电平 也固定在H-VDD电位的浓度区域(51)沿着其周边布置在p型隔离区域(53)的外侧。 这使得可以防止半导体集成电路装置发生故障或遭受损坏。
    • 6. 发明申请
    • ANTIFUSE BASED ON SILICIDED POLYSILICON BIPOLAR TRANSISTOR
    • 基于硅的多晶硅双极晶体管的抗体
    • WO98036453A1
    • 1998-08-20
    • PCT/CA1998/000114
    • 1998-02-13
    • H01L23/525H01L27/082H01L27/102
    • H01L23/5252H01L27/082H01L27/1022H01L2924/0002H01L2924/3011H01L2924/00
    • An improved antifuse which employs the base-emitter junction of a silicided single polysilicon bipolar transistor (40). The distance between the base metal and emitter metal is shortened and results from self aligning process steps rather than lithographic steps, resulting in a lower and better controlled programming voltage, programming energy and ON state resistance. Typically the conductive filament (146) formed in the new antifuse is about 0.65 microns long and is formed by a voltage pulse having a relatively slow rise time (e.g. 150 microseconds), resulting in improved properties which provide advantages in circuit design and in manufacturing circuits using the new antifuse. A similar technique may be used with a double polysilicon bipolar transistor (110).
    • 一种改进的反熔丝,其采用硅化单晶硅双极晶体管(40)的基极 - 发射极结。 贱金属和发射极之间的距离缩短,并由自对准工艺步骤而不是光刻步骤产生,从而导致编程电压更低和更好,编程能量和导通状态电阻。 通常,形成在新反熔丝中的导电细丝(146)的长度约为0.65微米,并且由具有相对较慢的上升时间(例如150微秒)的电压脉冲形成,从而提供了改进的性质,其在电路设计和制造电路中提供优点 使用新的反熔丝。 类似的技术可以与双重多晶硅双极晶体管(110)一起使用。
    • 9. 发明申请
    • METHOD FOR PRODUCING TRANSISTORS
    • 用于生产TRANSISTORS
    • WO00019503A1
    • 2000-04-06
    • PCT/EP1999/005942
    • 1999-08-13
    • H01L21/331H01L21/337H01L21/8222H01L21/8226H01L27/02H01L27/082H01L29/732H01L29/808H01L31/10H01L21/266H01L21/74H01L21/761H01L31/11
    • H01L29/66272H01L21/8222H01L21/8226H01L27/0233H01L27/082
    • The invention relates to a method for producing integrable semiconductor components, especially transistors or logic gates, using a p-doped semiconductor substrate. First of all, a mask is applied to the semiconductor substrate in order to define a window that is delimited by a peripheral edge. An n-doped trough is then produced in the semiconductor substrate by means of ion implantation, using an energy that is sufficient for ensuring that a p-doped inner area remains on the surface of the semiconductor substrate. The edge area of the n-doped trough extends as far as the surface of the semiconductor substrate. The other n-doped and/or p-doped areas that make up the structure of the transistor or logic gate are then inserted into the p-doped inner area of the semiconductor substrate. The inventive method is advantageous in that it no longer comprises expensive epitaxy and insulation processes. In an n-doped semiconductor substrate, all of the implanted ions are replaced by the complementary species, i.e., n is exchanged for p and vice versa.
    • 本发明涉及用于积半导体部件,尤其是晶体管或逻辑门,由p型掺杂的半导体衬底开始的制备方法。 在半导体基板的掩模用于限定由所述窗口的周界边缘首先被施加。 接着,在半导体衬底中阱的n掺杂通过离子注入用的能量足够了p掺杂的内部区域保持所述半导体衬底的表面上,其中,所述的边缘区域n掺杂阱延伸到半导体衬底的表面上产生。 另,形成晶体管或逻辑门n掺杂和/或然后p掺杂区被引入到半导体衬底的p型掺杂的内区的结构。 以考虑为昂贵的外延和隔离工艺的方法是有利的。 在n型掺杂的半导体衬底的所有注入由互补的物种所取代,即,n与p,反之亦然。