会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • PLASMA EXTRACTION MICROCAVITY PLASMA DEVIVE AND METHOD
    • 等离子体萃取微波等离子体蒸馏和方法
    • WO2007091993A3
    • 2009-05-28
    • PCT/US2006003289
    • 2006-01-31
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JIN
    • EDEN J GARYPARK SUNG-JIN
    • H01J61/04
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes (16, 18, 42) of the microcavity plasma device, and a probe electrode (20) proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric (22, 24, 26), and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间有限的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激发电极(16,18,42)之间的电位激发,并且靠近微腔的探针电极(20)保持在一个电极的电位,从 微腔等离子体装置。 在优选实施例中,微腔等离子体装置的激发电极通过电介质(22,24,26)与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体 然后由探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 2. 发明申请
    • AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD
    • 交流微型放电装置及方法
    • WO2007086857A3
    • 2008-08-14
    • PCT/US2006002932
    • 2006-01-24
    • UNIV ILLINOISEDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • EDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • H01J1/62
    • H01J61/09H01J1/025H01J9/02H01J17/066H01J37/32018H01J37/32596H01J65/046
    • A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric (1020, 220) on a first conducting layer or substrate (210, 1010). A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity (1040, 212) is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time- varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
    • 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层或衬底(210,1010)上层叠电介质(1020,220)来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔(1040,212)。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当大小的时变电位时,在微腔中产生微量放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。
    • 3. 发明申请
    • MICRODISCHARGE DEVICES WITH ENCAPSULATED ELECTRODES AND METHOD OF MAKING
    • 具有封装电极的微型器件及其制造方法
    • WO2007011388A3
    • 2007-06-14
    • PCT/US2005035782
    • 2005-10-04
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JIN
    • EDEN J GARYPARK SUNG-JIN
    • H01J9/00H01J17/04H01J61/04
    • H01J17/04H01J9/02
    • An embodiment of the invention is a microdischarge device including a first electrode (230) encapsulated in a dielectric, which may be a nanoporous dielectric film. A second electrode (240) is provided which may also be encapsulated with a dielectric. The electrodes are configured to ignite a discharge in a microcavity when a time-varying (an AC, RF, bipolar or a pulsed DC, etc.) potential is applied between the electrodes. In specific embodiments of the invention, the second electrode may be a screen covering the microcavity opening and the microcavity may be closed at one end. In some embodiments of the invention, the second electrode may be in direct contact with the first electrode. In other embodiments, a gap separates the electrodes. In a preferred method of manufacturing microdischarge devices with encapsulated electrodes, a metal substrate is used to form a nanoporous dielectric encapsulated electrode and dissolve a portion of the dielectric layer. The dielectric layer is then anodized a second time, resulting in a nanoporous dielectric encapsulated electrode with improved regularity of the nanoscale dielectric structures. In some embodiments of the invention, the columnar voids in the dielectric may be backfilled with one or more materials to further tailor the properties of the dielectric.
    • 本发明的一个实施例是一种微放电器件,其包括封装在电介质中的第一电极(230),其可以是纳米多孔介电膜。 提供第二电极(240),其也可以用电介质封装。 当在电极之间施加时变(AC,RF,双极或脉冲DC等)电位时,电极被配置为点燃微腔中的放电。 在本发明的具体实施例中,第二电极可以是覆盖微腔开口的屏幕,并且微腔可以在一端封闭。 在本发明的一些实施例中,第二电极可以与第一电极直接接触。 在其他实施例中,间隙分离电极。 在制造具有封装电极的微放电器件的优选方法中,使用金属衬底形成纳米多孔电介质封装电极并溶解电介质层的一部分。 然后将电介质层第二次进行阳极氧化,得到具有改进的纳米尺度电介质结构规则性的纳米多孔电介质封装电极。 在本发明的一些实施例中,电介质中的柱状空隙可以用一种或多种材料回填以进一步调整电介质的性质。
    • 6. 发明申请
    • MICROCAVITY PLASMA DEVICES WITH NON-UNIFORM CROSS-SECTION MICROCAVITIES
    • 具有非均匀性交叉显微镜的MICROCAVITY等离子体装置
    • WO2009055765A3
    • 2010-01-14
    • PCT/US2008081272
    • 2008-10-27
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JINSOO KWANGPRICE ANDREW J
    • EDEN J GARYPARK SUNG-JINSOO KWANGPRICE ANDREW J
    • H01L29/10H01J17/49H01L29/12
    • H01J11/18C25D11/12C25D11/26H01J9/241H01J61/82
    • An embodiment of the invention IS an array of microcavity plasma devices The array includes a first metal film electrode with a plurality of non-uniform cross-section microcavities therein that are encapsulated in oxide A second electrode is a thin metal foil encapsulated in oxide that is bonded to the first electrode A packaging layer contains gas or vapor in the non-uniform cross-section microcavities To make such device, photoresist is patterned to encapsulate the anodized foil or film except on a top surface at desired positions of microcavities A second anodization or electrochemical etching is conducted to form the non-uniform cross-section sidewall microcavities cavities After removing photoresist and metal oxide, a final anodization lines the walls of the microcavities with metal oxide and fully encapsulates the metal electrodes with metal oxide
    • 本发明的一个实施方案是微腔等离子体装置的阵列。阵列包括其中封装在氧化物中的多个非均匀横截面微腔的第一金属膜电极。第二电极是封装在氧化物中的薄金属箔, 键合到第一电极包装层在不均匀的横截面微腔中包含气体或蒸汽。为了制造这种器件,将光致抗蚀剂图案化以将阳极氧化的箔或膜除外在微腔的所需位置处的顶表面上。第二阳极氧化或 进行电化学蚀刻以形成不均匀的横截面侧壁微腔在除去光致抗蚀剂和金属氧化物之后,最后的阳极氧化用金属氧化物引导微腔的壁,并用金属氧化物完全封装金属电极
    • 8. 发明申请
    • ENCAPSULATED METAL MICROTIP MICROPLASMA DEVICES, ARRAYS AND FABRICATION METHODS
    • 包封的金属微型微器械装置,阵列和制造方法
    • WO2012015943A3
    • 2012-04-05
    • PCT/US2011045564
    • 2011-07-27
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JINYOON JEKWONCHUNG BRIAN
    • EDEN J GARYPARK SUNG-JINYOON JEKWONCHUNG BRIAN
    • H05H1/24B01D53/00C01B13/11C02F1/48
    • H01T21/00B01D53/32B01D2257/104B01D2257/91B01D2258/06B01D2259/818C01B13/10C02F1/32C02F1/4608C02F1/46109C02F1/48C02F1/78C02F2001/46133C02F2001/46152C02F2303/04H05H1/2406H05H2001/2418H05H2245/121
    • An embodiment of the invention is a microtip microplasma device having a first metal microtip ( 12a, 50a) opposing a second metal microtip ( 12b, 50b) with a gap ( 16, 48) therebetween. The first and second metal microtips are encapsulated in metal oxide ( 14) that electrically isolates and physically connects the first and second metal microtips. In preferred devices, the first and second metal microtips and metal oxide comprise a monolithic, unitary structure. Arrays (62, 64, 66, 86, 92, 100) can be flexible, can be arranged in stacks, and can be formed into cylinders, for example, for gas and liquid processing devices, air filters and other applications. A preferred method of forming an array of microtip microplasma devices provides a metal mesh with an array of micro openings therein. Electrode areas of the metal mesh are masked leaving planned connecting metal oxide areas of the metal mesh unmasked. Planned connecting metal oxide areas are electrochemically etched to convert the planned connecting metal oxide areas to metal oxide that encapsulates opposing metal microtips therein. The mask is removed. The electrode areas are electrochemically etched to encapsulate the electrode areas in metal oxide.
    • 本发明的一个实施方案是具有与第二金属微尖端(12b,50b)相对并在其间具有间隙(16,48)的第一金属微尖端(12a,50a)的微尖端微等质力装置。 第一和第二金属微尖端封装在金属氧化物(14)中,该金属氧化物电隔离并物理连接第一和第二金属微尖端。 在优选的装置中,第一和第二金属微尖端和金属氧化物构成整体式单一结构。 阵列(62,64,66,86,92,100)可以是柔性的,可以堆叠排列,并且可以形成为圆柱体,例如用于气体和液体处理装置,空气过滤器和其他应用。 形成微尖端微等离子体装置阵列的优选方法提供了其中具有微孔开口阵列的金属网。 金属网的电极区域被掩蔽,留下未被掩蔽的金属网的规划连接金属氧化物区域。 电化学蚀刻计划连接的金属氧化物区域以将所计划的连接金属氧化物区域转换为金属氧化物,其中封装相对的金属微尖端。 面具被删除。 对电极区域进行电化学蚀刻以将电极区域封装在金属氧化物中。
    • 9. 发明申请
    • LOW VOLTAGE MICROCAVITY PLASMA DEVICE AND ADDRESSABLE ARRAYS
    • 低电压微波等离子体装置和可寻址阵列
    • WO2007146279A2
    • 2007-12-21
    • PCT/US2007013765
    • 2007-06-12
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JINTCHERTCHIAN PAUL ASUNG SEUNG HOON
    • EDEN J GARYPARK SUNG-JINTCHERTCHIAN PAUL ASUNG SEUNG HOON
    • F24V30/00
    • H01J11/12
    • Microcavity plasma devices and arrays of microcavity plasma devices are provided that have a reduced excitation voltage. A trigger electrode (28, 28a, 28b, 35a, 35b) disposed proximate to a microcavity (12) reduces the excitation voltage required between first and second electrodes (16, 18) to ignite a plasma in the microcavity when gas(es) or vapor(s) (or combinations thereof) are contained within the microcavity. The invention also provides symmetrical microplasma devices and arrays of microcavity plasma devices for which current waveforms are the same for each half-cycle of the voltage driving waveform. Additionally, the invention also provides devices that have standoff portions and voids that can reduce cross talk. The devices are preferably also used with a trigger electrode.
    • 提供微腔等离子体器件和微腔等离子体器件的阵列,其具有降低的激发电压。 靠近微腔(12)设置的触发电极(28,28a,28b,35a,35b)降低了第一和第二电极(16,18)之间所需的激发电压,以便在气体(或)或 蒸气(或其组合)包含在微腔内。 本发明还提供对称的微等离子体装置和微腔等离子体装置的阵列,其电流波形在电压驱动波形的每个半周期是相同的。 此外,本发明还提供了具有能够减少串扰的间隔部分和空隙的装置。 这些装置优选地也与触发电极一起使用。