会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ULTRASONIC MATERIAL MONITOR FOR DETERMINING A CHARACTERISTIC OF THE MATERIAL
    • 用于确定材料特性的超声波材料监测仪
    • WO2008069847A2
    • 2008-06-12
    • PCT/US2007016625
    • 2007-07-25
    • LUNA INNOVATIONS INCMCKENNA MARK JHEYMAN JOSEPH S
    • MCKENNA MARK JHEYMAN JOSEPH S
    • G01H5/00G01L1/00G01N29/07
    • G01N29/07G01H5/00G01N29/346G01N2291/02491G01N2291/02827
    • A material characteristic measurement approach measures an internal state of a material by measuring the nonlinear shift in velocity induced by different acoustic energies. The technology for implementing this measurement approach is relatively simple, robust, permits portable measurements, does not require that an unloaded initial condition of the material be measured or otherwise known in order to determine a characteristic of the material, can be applied using one or more transducers, and does not require physical contact with the material. Some example material characteristics include: a residual stress existing without any external mechanical force applied, applied stress, a fatigue state, age, an interference-fit fastener stress, bio-activity, a nanostructure mixture of the material, a heat treatment of the material, a cross-linking of polymers in the material, a bio-growth organization of the material, a clotting factor of blood or blood-like material, a cure of an adhesive or sealant material, or the microstructure of the material.
    • 材料特性测量方法通过测量由不同声能引起的速度的非线性变化来测量材料的内部状态。 实施这种测量方法的技术相对简单,鲁棒,允许便携式测量,不需要测量材料的未加载初始状态或以其他方式知道以确定材料的特性,可以使用一个或多个 换能器,并且不需要与材料物理接触。 一些示例性材料特性包括:存在没有施加任何外部机械力的残余应力,施加的应力,疲劳状态,年龄,干涉配合紧固件应力,生物活性,材料的纳米结构混合物,材料的热处理 ,材料中聚合物的交联,材料的生物生长组织,血液或血液样材料的凝结因子,粘合剂或密封剂材料的固化,或材料的微结构。
    • 2. 发明申请
    • ULTRASONIC METHOD TO DETERMINE BONE PARAMETERS
    • 超声方法确定骨参数
    • WO2006119511A2
    • 2006-11-09
    • PCT/US2006017858
    • 2006-05-04
    • LUNA INNOVATIONS INCLYNCH JOHN EHEYMAN JOSEPH SMCKENNA MARK
    • LYNCH JOHN EHEYMAN JOSEPH SMCKENNA MARK
    • A61B8/00
    • A61B8/0875A61B8/0808A61B8/485
    • A method of measuring bone strength under dynamic loading is provided using an ultrasonic probe wave sensor to sense a low-frequency pump wave and an ultrasonic probe wave implemented to the bone. The bone is cyclically loaded with compressional and rarefactional pump waves, and probed with the probe wave that is timed according to the pump wave to determine the wave velocity of the probe wave. Bone strength is interpreted by measuring wave velocity changes during the pump wave cycles. Ultrasonic velocity derivatives are used to determine bone third-order (nonlinear) elastic constants that are linked to bone strength. High-resolution second-order (linear) elastic constants are provided through measurement of absolute phase velocity. A pulsed phase lock loop is locked at intervals as the probe wave phase is modulated over 360 degrees providing probe wave harmonic numbers that are correlated with the pump wave frequency to determine the probe wave velocity.
    • 使用超声波探头波传感器来测量在动态载荷下测量骨强度的方法,以感测实施到骨骼上的低频泵浦波和超声探针波。 骨骼循环加载有压缩和稀疏的泵浦波,并用根据泵波定时的探针波探测以确定探针波的波速。 通过在泵波周期期间测量波速度变化来解释骨强度。 超声波速度导数用于确定与骨强度相关的骨三阶(非线性)弹性常数。 通过测量绝对相速度提供高分辨率二阶(线性)弹性常数。 脉冲相位锁定环被间隔锁定,因为探测波相位被调制到360度以上,提供与泵浦波频率相关的探测波谐波数,以确定探测波速度。
    • 4. 发明申请
    • ACOUSTIC CONCEALED ITEM DETECTOR
    • 声音隐蔽物体探测器
    • WO2006068689A3
    • 2007-08-02
    • PCT/US2005037322
    • 2005-10-18
    • LUNA INNOVATIONS INCHEYMAN JOSEPH S
    • HEYMAN JOSEPH S
    • G01S15/04G03B42/06
    • G01V1/001
    • The present invention is directed towards an acoustic concealed item detector and related methods for detection using acoustics. In an illustrative embodiment, a multi-frequency ultrasonic wave generator generates in a gaseous medium at least first and second ultrasonic waves. The multi-frequency ultrasonic wave generator is arranged such that in operation, the first ultrasonic wave and the second ultrasonic wave mix in a prescribed mixing zone to produce a difference-frequency acoustic wave. A receiver sensor detects the difference-frequency acoustic wave and produces corresponding electromagnetic signals. The electromagnetic signals are processed by a system processor and signals indicative of concealed items are identified. Preferably the ultrasonic waves are focused to a small prescribed mixing zone. Parametric and multi-transducer embodiments are disclosed.
    • 本发明涉及声学隐藏物品检测器和相关的使用声学检测的方法。 在说明性实施例中,多频超声波发生器在气体介质中产生至少第一和第二超声波。 多频超声波发生器被布置成使得在操作中,第一超声波和第二超声波在规定的混合区域中混合,以产生差频声波。 接收器传感器检测差频声波并产生相应的电磁信号。 电磁信号由系统处理器处理,并且识别指示隐藏物品的信号。 优选地,超声波被聚焦到小的规定的混合区域。 公开了参数和多换能器实施例。
    • 5. 发明申请
    • DYNAMIC ACOUSTIC THERMOMETER
    • 动态声学温度计
    • WO2006099563A2
    • 2006-09-21
    • PCT/US2006009624
    • 2006-03-10
    • LUNA INNOVATIONS INCHEYMAN JOSEPH SMALYARENKO EUGENE V
    • HEYMAN JOSEPH SMALYARENKO EUGENE V
    • G01K11/22
    • G01K11/24G01K11/22
    • Acoustic temperature measurement at a remote location is provided. An acoustic source transmits acoustic to an acoustic receiver along an acoustic path. The path passes through or near the remote location. The temperature is non-uniform along the path. A change in an integrated acoustic delay between the source and receiver along the path is measured. This acoustic delay can be either a phase velocity delay or a group velocity delay. The temperature at the remote location is determined by relating the measured change in integrated acoustic delay to the remote location temperature with a combined thermal-acoustic model. The combined model relates temperature to acoustic propagation velocity along the path. The combined model preferably includes temperatures of the source and receiver locations, and a heat source geometry at the remote location
    • 提供远程位置的声温测量。 声源沿着声学路径将声学传输到声学接收器。 路径通过或靠近远程位置。 温度沿路径不均匀。 测量沿着路径的源和接收器之间的集成声学延迟的变化。 该声学延迟可以是相速度延迟或组速度延迟。 通过使用组合的热声模型将测量的整体声学延迟的变化与远程位置温度相关联来确定远程位置处的温度。 组合模型将温度与沿路径的声传播速度相关联。 组合模型优选地包括源和接收器位置的温度,以及远程位置处的热源几何形状