会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • TROPHIC CONVERSION OF OBLIGATE PHOTOTROPHIC ALGAE THROUGH METABOLIC ENGINEERING
    • 通过代谢工程进行的白藜芦醇的热转化
    • WO0181603A3
    • 2002-05-23
    • PCT/US0112789
    • 2001-04-20
    • MARTEK BIOSCIENCES CORPAPT KIRK EALLNUTT THOMAS F CKYLE DAVID JLIPPMEIER JAMES C
    • APT KIRK EALLNUTT THOMAS F CKYLE DAVID JLIPPMEIER JAMES C
    • C12N15/09C12N1/12C12N1/13C12N15/65C12N15/79C12N15/82C12Q1/02C07K14/415C07K14/47
    • C12N15/8209C12N1/12C12N15/65C12N15/79C12N15/8207Y10S435/946
    • Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically-derived energy. In this study it is shown that the microalga Phaeodaclylurn tricornutum can be engineered to import glucose and grow in the dark through the introduction of genes encoding glucose transporters. Both the human and Chlorella kessleri glucose transporters facilitated the uptake of glucose by P. tricornutum , allowing the cells to metabolize exogenous organic carbon and thrive, independent of light. This is the first successful trophic conversion of an obligate photoautotroph through metabolic engineering, and it demonstrates that methods of cell nourishment can be fundamentally altered with the introduction of a single gene. Since strains transformed with the glucose transport genes are able to grow non-photosynthetically, they can be exploited for the analysis of photosynthetic processes through mutant generation and characterization. Finally, this work also represents critical progress toward large-scale commercial exploitation of obligate phototrophic algae through the use of microbial fermentation technology, eliminating significant limitations resulting from light-dependent growth.
    • 大多数微藻是专性光自养体,其生长严格依赖于光合作用衍生能量的产生。 在本研究中,显示微藻Phaeodaclylurn tricornutum可以通过引入编码葡萄糖转运蛋白的基因进行工程化以导入葡萄糖并在黑暗中生长。 人和小球藻凯斯勒葡萄糖转运蛋白均促进了P的葡萄糖摄取。 三角褐斑,允许细胞代谢外源有机碳,并且独立于光而茁壮成长。 这是通过代谢工程首次成功地营养专一性自养型营养转化,并且表明通过引入单一基因可以从根本上改变细胞营养的方法。 由于用葡萄糖转运基因转化的菌株能够非光合作用生长,因此可以通过突变体的产生和表征来开发光合作用的分析。 最后,这项工作也是通过使用微生物发酵技术大规模商业开发专用光营养藻类的重要进展,消除了光依赖性生长造成的重大限制。
    • 3. 发明申请
    • INCORPORATION OF ANAEROBIC BACTERIA IN FEED FORMULATION
    • 饲料配方中厌氧细菌的并入
    • WO03089579A2
    • 2003-10-30
    • PCT/US0311366
    • 2003-04-14
    • ALLNUTT THOMAS F CHAREL MOTI
    • ALLNUTT THOMAS F CHAREL MOTI
    • A23K1/00A23K1/18C12N
    • A23K50/80A23K10/16A23K10/18A23K50/75
    • Anaerobic bacteria are incorporated in a feed such that they provide a benefit to the consuming animal. Anaerobic bacteria can be viable and colonize the gut to provide this benefit by displacing harmful bacteria, secreting a particular agent (e.g., enzyme, antibiotic or bioactive compound), binding or sequestering harmful organisms or compounds, or providing a beneficial physical effect. Anaerobic bacteria can also be added n a non-viable form wherein the added bacteria provide a benefit to the consuming organism by delivering preformed compounds such as enzymes, bioactive agents, or polymers. Recombinant anaerobes can be utilized for any of the above purposes. Feeds can contain naked bacteria, spores, treated bacteria such as encapsulated, coated or freeze dried bacteria, in order to maintain either viability or stability of the active function.
    • 厌氧细菌被掺入饲料中,以便它们为消费动物提供益处。 通过置换有害细菌,分泌特定试剂(例如酶,抗生素或生物活性化合物),结合或隔离有害生物体或化合物,或提供有益的物理效应,厌氧细菌可以存活并殖民肠道以提供此益处。 厌氧细菌也可以以不存活的形式加入,其中添加的细菌通过递送预形成的化合物例如酶,生物活性剂或聚合物而为消费生物提供益处。 重组厌氧菌可用于上述任何目的。 饲料可含有裸露的细菌,孢子​​,经处理的细菌,如包封的,包衣的或冷冻干燥的细菌,以维持活性功能的活力或稳定性。