会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明申请
    • COLD CATHODE AND METHODS FOR PRODUCING THE SAME
    • 冷阴极及其制造方法
    • WO9859355A3
    • 1999-06-10
    • PCT/RU9800200
    • 1998-06-23
    • DZBANOVSKY NIKOLAI NIKOLAEVICHPILEVSKY ANDREI ALEXANDROVICHSUETIN NIKOLAI VLADISLAVOVICHRAKHIMOV ALEXANDR TURSUNOVICHTIMOFEYEV MIKHAIL ARKADIEVICH
    • DZBANOVSKY NIKOLAI NIKOLAEVICHPILEVSKY ANDREI ALEXANDROVICHSUETIN NIKOLAI VLADISLAVOVICHRAKHIMOV ALEXANDR TURSUNOVICHTIMOFEYEV MIKHAIL ARKADIEVICH
    • H01J9/02H01J1/30
    • H01J9/027H01J9/025
    • The present invention relates to the production of highly efficient films for field-effect electron emitters, wherein said films may be used in the production of flat displays in electronic microscopes, in microwave electronics, in light sources, etc. This invention more precisely relates to a cold cathode that comprises a substrate having a carbon film applied thereto. The carbon film has an irregular structure consisting of carbon micro-ridges and/or micro-threads which are perpendicular to the surface of the substrate, have a size ranging typically from 0.01 to 1 micron and a distribution density of between 0.1 and 10 mu m . This invention also relates to method for producing a cold electrode, wherein said method comprises generating a DC current discharge with a current density of between 0.15 and 0.5 A/cm in a mixture comprising hydrogen and a carbon-containing additive, and further depositing the carbon phase on the substrate located at the anode. The deposition process is carried out in a mixture containing hydrogen and vapours of ethylic alcohol or methane, under an overall pressure of between 50 and 300 Torrs and at a substrate temperature of between 600 and 900 DEG C. The concentration of ethylic alcohol vapours ranges from 5 to 10 % while that of methane vapours ranges from 15 to 30 %. A method for producing a cold cathode comprises generating a microwave discharge at an absorbed power of between 100 and 1000 W. This discharge is generated in a mixture containing gaseous carbon oxide as well as methane in a 0.8-1.2 concentration and under a pressure of between 10 and 200 Torrs, and the carbon phase is further deposited on the substrate at a temperature on the substrate surface that ranges from 500 to 700 DEG C.
    • 本发明涉及制备用于场效应电子发射体的高效膜,其中所述膜可用于生产电子显微镜中的平板显示器,微波电子学,光源等。本发明更精确地涉及 冷阴极,其包括具有施加到其上的碳膜的基板。 碳膜具有由碳微脊和/或微线组成的不规则结构,其垂直于衬底的表面,其尺寸通常为0.01至1微米,分布密度为0.1至10微米 <-2>。 本发明还涉及冷电极的制造方法,其中所述方法包括在包含氢和含碳添加剂的混合物中产生电流密度在0.15和0.5A / cm 2之间的直流电流放电 将碳相沉积在位于阳极的基底上。 沉积过程在含有氢气和乙醇或甲烷蒸气的混合物中进行,其总压力为50-300托,底物温度为600-900℃。乙醇蒸气的浓度范围为 5〜10%,甲烷蒸气的浓度为15〜30%。 制造冷阴极的方法包括以100至1000W的吸收功率产生微波放电。该放电是在含有气态碳氧化物的混合物以及0.8-1.2浓度的甲烷和在 10和200托,并且在基材表面上的温度下在碳衬底上进一步沉积碳相,其温度为500-700℃。
    • 82. 发明申请
    • PROTECTION OF SPINDT TYPE CATHODES DURING FABRICATION OF ELECTRON-EMITTING DEVICE
    • 电子发射装置制造过程中旋转型阴极的保护
    • WO99023682A1
    • 1999-05-14
    • PCT/US1998/022762
    • 1998-10-27
    • H01J9/02
    • H01J9/025
    • In a partially finished electron-emitting device having electron-emissive elements (56A) formed at least partially with electrically non-insulating emitter material, electron-emissive element contamination that could result from passage of contaminant material through an excess layer (56B) of the emitter material is inhibited by forming a protective layer (58 or 70) over the excess emitter-material layer before performing additional processing operations on the electron-emitting device. Subsequent to these processing operations, material of the excess and protective layers overlying the electron-emissive elements is removed to expose the electron-emissive elements.
    • 在具有至少部分地形成有非绝缘发射极材料的电子发射元件(56A)的部分完成的电子发射器件中,可能由污染物质通过过量层(56B)而导致的电子发射元件污染 在对电子发射器件执行额外的处理操作之前,通过在过量的发射极 - 材料层上形成保护层(58或70)来抑制发射极材料。 在这些处理操作之后,除去覆盖电子发射元件的过量和保护层的材料以暴露电子发射元件。
    • 83. 发明申请
    • CLEANING OF ELECTRON-EMISSIVE ELEMENTS
    • 清洁电子发射元件
    • WO99017323A2
    • 1999-04-08
    • PCT/US1998/018509
    • 1998-09-22
    • H01J9/38H01J9/02H01J
    • H01J9/025
    • Multiple procedures are presented for removing contaminant material (12) from electron-emissive elements (10) of an electron-emitting device (30). One procedure involves converting the contaminant material into gaseous products (14), typically by operating the electron-emissive elements, that move away from the electron-emissive elements. Another procedure entails converting the contaminant material into further material (16) and removing the further material. An additional procedure involves forming surface coatings (18 or 20) over the electron-emissive elements. The contaminant material is then removed directly from the surface coatings or by removing at least part of each surface coating.
    • 本发明涉及用于从电子发射装置(30)的电子发射元件(10)去除任何污染物(12)的各种程序。 这些程序之一在于将污染物转化为从所述电子发射元件移开的气体产物(14),这种转换通常通过调试这些元件而发生。 这些程序中的另一个步骤是将这些污染物转化为辅助物质(16),然后除去该物质。 另一种方法是在直接从这些涂层去除污染物或除去这些涂层中的至少一部分之前,在所述电子发射元件上沉积表面涂层(18或20)。
    • 85. 发明申请
    • FIELD EMITTER FABRICATION USING OPEN CIRCUIT ELECTROCHEMICAL LIFT OFF
    • 使用开路电子放电关闭的场发射器制造
    • WO98049376A1
    • 1998-11-05
    • PCT/US1998/002525
    • 1998-02-10
    • C25F3/02B81C1/00C25F3/14H01J9/02C25D5/02B23H3/00B44C1/22C25D5/48H01J1/02H01J1/62
    • H01J9/025
    • A method for forming a field emitter structure in which a cavity (208) is formed into an insulating layer (206) overlaying a first electrically conductive layer (202). A second electrically conductive layer (210) with an opening (212) is formed above the cavity. Electron emissive material (214) is deposited directly onto the second electrically conductive layer without first depositing an underlying lift-off layer. Electron emissive material covers the opening in the second electrically conductive layer and forms an electron emissive element (216) within the cavity. A first potential is imparted to the electron emissive element. A second open circuit potential is imparted to the closure layer of electron emissive material. The field emitter structure is exposed to an electrochemical etchant (220) wherein the electrochemical etchant etches electron emissive material which is biased at open circuit potential. Electron emissive material is removed from above the second electrically conductive layer without etching the electron emissive element.
    • 一种用于形成场致发射结构的方法,其中空腔(208)形成为覆盖第一导电层(202)的绝缘层(206)。 具有开口(212)的第二导电层(210)形成在空腔上方。 电子发射材料(214)直接沉积到第二导电层上,而不首先沉积下面的剥离层。 电子发射材料覆盖第二导电层中的开口,并在空腔内形成电子发射元件(216)。 赋予电子发射元件的第一个电位。 向电子发射材料的封闭层施加第二开路电位。 场致发射器结构暴露于电化学腐蚀剂(220),其中电化学蚀刻剂蚀刻电子发射材料,其被偏置在开路电位。 电子发射材料从第二导电层上方去除而不蚀刻电子发射元件。
    • 87. 发明申请
    • SURFACE ELECTRON DISPLAY DEVICE AND FABRICATION PROCESS
    • 表面电子显示器件和制造工艺
    • WO1998032145A2
    • 1998-07-23
    • PCT/US1997023718
    • 1997-12-30
    • ADVANCED VISION TECHNOLOGIES, INC.
    • ADVANCED VISION TECHNOLOGIES, INC.POTTER, Michael, D.
    • H01J00/00
    • H01J3/022H01J9/025
    • A device useful as a display element has an electron emitter and an anode disposed to receive electrons emitted from the emitter. The anode has surface portions differing in resistivity, providing an electron sink portion at the surface portion of lowest resistivity. A preferred embodiment has a lateral field-emission electron emitter and has an anode formed by processes specially adapted to provide anode portions of differing resistivity, including the electron sink portion. The electron sink portion is preferably disposed at a position laterally spaced apart from the emitting tip of the device's electron emitter. In a particularly preferred fabrication process, the anode is formed by depositing a base layer, depositing and patterning an etch-stop layer with an opening to define the electron-sink portion, forming an opening by etching overlying layers down to the etch-stop layer, and heating the base layer and etch-stop layer to form an anode surface that includes both an integral electron-sink portion and a cathodoluminescent phosphor for emitting light. The fabrication process provides for fabricating a plurality of display element devices to make a flat panel display.
    • 用作显示元件的器件具有设置成接收从发射极发射的电子的电子发射器和阳极。 阳极具有电阻率不同的表面部分,在最低电阻率的表面部分提供电子吸收部分。 优选实施例具有横向场发射电子发射器,并且具有通过特别适于提供包括电子吸收部分的不同电阻率的阳极部分的工艺形成的阳极。 电子吸收部优选设置在与器件的电子发射体的发射端横向间隔开的位置。 在特别优选的制造工艺中,阳极通过沉积基底层,沉积和图案化具有开口的蚀刻停止层以形成电子吸收部分而形成,通过将覆盖层向下蚀刻到蚀刻停止层 并且加热基底层和蚀刻停止层以形成包括用于发光的整体电子吸收部分和阴极发光荧光体的阳极表面。 制造工艺提供制造多个显示元件装置以制作平板显示器。
    • 89. 发明申请
    • FIELD EMITTER DEVICE, AND VEIL PROCESS FOR THE FABRICATION THEREOF
    • 场发射器件及其制造方法
    • WO1997009731A2
    • 1997-03-13
    • PCT/US1996013330
    • 1996-08-19
    • FED CORPORATION
    • FED CORPORATIONJONES, Gary, W.ZIMMERMAN, Steven, M.SILVERNAIL, Jeffrey, A.JONES, Susan, K., Schwartz
    • H01J00/00
    • H01J9/025H01J3/022H01J2201/319H01J2329/00Y10S428/938
    • A field emitter device formed by a veil process wherein a protective layer (64/66) comprising a release layer (64) is deposited on the gate electrode layer (62) for the device, with the protective layer overlying the circumscribing peripheral edge of the opening of the gate electrode layer, to protect the edge of the gate electrode layer during etching of the field emitter cavity (72) in the dielectric material layer (30) on a substrate, and during the formation of a field emitter element (40) in the cavity by depositing a field emitter material through the opening. The protective layer is readily removed subsequent to completion of the cavity etching and emitter formation steps, to yield the field emitter device. Also disclosed are various planarizing structures and methods, and current limiter compositions permitting high efficiency emission of electrons from the field emitter elements at low turn-on voltages.
    • 一种通过面纱工艺形成的场发射器件,其中包括释放层(64)的保护层(64/66)沉积在用于器件的栅极电极层(62)上,其中保护层覆盖在该外围边缘 在栅极电极层的开口处,以在蚀刻衬底中的电介质材料层(30)中的场致发射体空腔(72)和在形成场致发射体元件(40)期间保护栅电极层的边缘, 通过沉积通过开口的场发射体材料在腔中。 在腔蚀刻和发射极形成步骤完成之后,保护层容易去除,以产生场致发射器件。 还公开了各种平面化结构和方法,以及允许在低导通电压下从场致发射元件高效发射电子的限流器组合物。
    • 90. 发明申请
    • ELECTRON-EMITTING ELECTRODE, METHOD OF MANUFACTURING THE SAME, AND LIGHT-EMITTING DEVICE HAVING THE SAME
    • 电子发射电极,其制造方法和具有该发光电极的发光装置
    • WO1997005639A1
    • 1997-02-13
    • PCT/JP1996002013
    • 1996-07-19
    • CASIO COMPUTER CO., LTD.STANLEY ELECTRIC CO., LTD.
    • CASIO COMPUTER CO., LTD.STANLEY ELECTRIC CO., LTD.NAKAMURA, OsamuSUZUKI, Shigemi
    • H01J01/30
    • B82Y10/00G02F1/1336H01J1/30H01J1/3042H01J9/022H01J9/025H01J61/0677H01J61/305H01J61/32H01J61/70H01J61/72H01J2201/30446H01J2217/49271H01J2329/00
    • An yttrium film (34) is formed on a base plate (33) made of an Ni-Cr alloy (INCONEL 601), by vapor deposition (achieved by resistance heating or application of an electron beam) or sputtering, to a thickness ranging from 1000 ANGSTROM to about 3000 ANGSTROM . The resultant structure consisting of the base plate (33) and the yttrium film (34) is placed on a table (32) provided in a reaction furnace (31) which has a gas inlet port (38) and a gas outlet port (39). Hydrogen is introduced into the furnace (31) through the gas inlet port (38), thus filling the furnace (31) with hydrogen. The concentration of oxygen and/or oxygen-containing substance should be 1 % or less by volume. The oxygen-containing substance is water, which exists in the form of vapor. The hydrogen atmosphere is heated from normal temperature to about 600 DEG C, thus heating the structure at about 600 DEG C for 10 to 60 minutes, thereby forming an yttrium oxide film (36), which covers a body (35) of the yttrium film. Thereafter, the yttrium oxide film (36) is dehydrogenated, it is heated at 350 DEG C or more for 15 minutes in an atmosphere having a pressure reduced to 1 x 10 Torr or less, thereby removing the hydrogen from the yttrium oxide film (36). As a result, there is manufactured an electron-emitting electrode which has good electron-emitting property.
    • 在由Ni-Cr合金(INCONEL 601)制成的基板(33)上,通过气相沉积(通过电阻加热或施加电子束实现)或溅射形成钇膜(34),厚度范围从 1000 ANGSTROM到约3000 ANGSTROM。 将由基板(33)和钇膜(34)组成的结构放置在设置在具有气体导入口(38)和气体出口(39)的反应炉(31)的台(32) )。 通过气体入口(38)将氢气引入炉子(31),从而用氢气填充炉子(31)。 氧和/或含氧物质的浓度应为1体积%以下。 含氧物质是以蒸气形式存在的水。 将氢气从正常温度加热至约600℃,由此在约600℃下加热结构10至60分钟,从而形成覆盖钇膜体(35)的氧化钇膜(36) 。 此后,氧化钇膜(36)脱氢,在压力降至1×10 -3乇或更低的气氛中,在350℃以上加热15分钟,从而从钇中除去氢 氧化膜(36)。 结果,制造了具有良好的电子发射特性的电子发射电极。