会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Multilayer interconnection structure for a semiconductor device
    • 半导体器件的多层互连结构
    • US5313100A
    • 1994-05-17
    • US871228
    • 1992-04-20
    • Atsushi IshiiYoshifumi TakataAkihiko OhsakiKazuyoshi Maekawa
    • Atsushi IshiiYoshifumi TakataAkihiko OhsakiKazuyoshi Maekawa
    • H01L23/522H01L21/768H01L23/532H01L29/400H01L29/460
    • H01L23/53223H01L2924/0002Y10S257/915
    • An aluminum interconnection film has a three layered structure of an aluminum alloy film, a tungsten film, and a titanium nitride film. An aluminum interconnection film and an aluminum interconnection film are electrically connected through a through hole formed in a silicon oxide film. Because light reflectivity of the titanium nitride film is low, the exposed area of the resist can be kept within a predetermined area even if photolithography is carried out above a step where light is irregularly reflected. Therefore, it is possible to form a through hole of a desired dimension even if the through hole is formed above the step. Even if the titanium nitride film is etched and removed in forming the through hole, the aluminum alloy film is not exposed since the etching speed of the silicon oxide film is considerably slower than that of the tungsten film. The problem of denatured layer formation and residue formation caused by exposure of aluminum alloy film does not occur.
    • 铝互连膜具有铝合金膜,钨膜和氮化钛膜的三层结构。 铝互连膜和铝互连膜通过形成在氧化硅膜中的通孔电连接。 由于氮化钛膜的光反射率低,所以即使在光不规则地反射的步骤上进行光刻,也可以将抗蚀剂的露出面积保持在规定的面积内。 因此,即使在台阶上方形成通孔,也可以形成所需尺寸的通孔。 即使在形成通孔时蚀刻和去除氮化钛膜,由于氧化硅膜的蚀刻速度比钨膜的蚀刻速度慢得多,因此铝合金膜不暴露。 不会发生由铝合金膜暴露引起的变性层形成和残留物形成的问题。
    • 2. 发明授权
    • Refractory metal capped low resistivity metal conductor lines and vias
    • 耐火金属封盖的低电阻金属导线和通孔
    • US6147402A
    • 2000-11-14
    • US113918
    • 1998-07-10
    • Rajiv V. JoshiJerome J. CuomoHormazdyar M. DalalLouis L. Hsu
    • Rajiv V. JoshiJerome J. CuomoHormazdyar M. DalalLouis L. Hsu
    • H01L21/28H01L21/312H01L21/316H01L21/318H01L21/768H01L23/498H01L23/522H01L23/532H01L29/440H01L29/460
    • H01L21/76843H01L21/76838H01L21/7684H01L21/76847H01L21/76849H01L21/76852H01L21/76877H01L23/49866H01L23/53223H01L23/53228H01L23/53233H01L23/53238H01L2924/0002H01L2924/09701Y10S148/015Y10S257/915Y10S438/959
    • Capping a low resistivity metal conductor line or via with a refractory metal allows for effectively using chemical-mechanical polishing techniques because the hard, reduced wear, properties of the refractory metal do not scratch, corrode, or smear during chemical-mechanical polishing. Superior conductive lines and vias are created using a combination of both physical vapor deposition (e.g., evaporation or collimated sputtering) of a low resistivity metal or alloy followed by chemical vapor deposition (CVD) of a refractory metal and subsequent planarization. Altering a ratio of SiH.sub.4 to WF.sub.6 during application of the refractory metal cap by CVD allows for controlled incorporation of silicon into the tungsten capping layer. Collimated sputtering allows for creating a refractory metal liner in an opening in a dielectric which is suitable as a diffusion barrier to copper based metalizations as well as CVD tungsten. Ideally, for faster diffusing metals like copper, liners are created by a two step collimated sputtering process wherein a first layer is deposited under relatively low vacuum pressure where directional deposition dominates (e.g., below 1 mTorr) and a second layer is deposited under relatively high vacuum pressure where scattering deposition dominates (e.g., above 1 mTorr). For refractory metals like CVD tungsten, the liner can be created in one step using collimated sputtering at higher vacuum pressures.
    • 用难熔金属覆盖低电阻率金属导体线或通孔允许有效地使用化学机械抛光技术,因为在化学机械抛光期间难熔金属的硬度降低的磨损特性不会划伤,腐蚀或涂抹。 使用低电阻率金属或合金的物理气相沉积(例如,蒸发或准直溅射)以及随后的难熔金属的化学气相沉积(CVD)和随后的平坦化的组合来产生优异的导电线和通孔。 在通过CVD施加难熔金属帽时改变SiH4与WF6的比率允许将钨控制并入钨覆盖层中。 准直溅射允许在电介质中的开口中形成难熔金属衬垫,其适合作为铜基金属化的扩散阻挡层以及CVD钨。 理想地,为了更快地扩散金属如铜,通过两步准直溅射工艺产生衬垫,其中第一层在相对低的真空压力下沉积,其中定向沉积占主导地位(例如,低于1mTorr),并且第二层沉积在较高的 散射沉积占主导地位的真空压力(例如高于1mTorr)。 对于诸如CVD钨的难熔金属,可以在较高的真空压力下使用准直溅射在一个步骤中创建衬垫。
    • 3. 发明授权
    • Semiconductor device having an improved metal interconnect structure
    • 具有改进的金属互连结构的半导体器件
    • US5442235A
    • 1995-08-15
    • US172320
    • 1993-12-23
    • Louis C. ParrilloJeffrey L. Klein
    • Louis C. ParrilloJeffrey L. Klein
    • H01L23/522H01L23/532H01L29/460
    • H01L23/53238H01L23/5226H01L23/53219H01L2924/0002Y10S438/927
    • A metal interconnect structure includes copper interface layers (24, 30) located between a refractory metal via plug (28), and first and second metal interconnect layers (16, 32). The copper interface layers (24, 30) are confined to the area of a via opening (22) in an insulating layer (20) overlying the first interconnect layer (16) and containing the via plug (28). The interface layers (24, 30) are subjected to an anneal to provide copper reservoirs (36, 37) in the interconnect layers (16, 32) adjacent to the interface layers (24, 30). The copper reservoirs (36, 37) continuously replenish copper depleted from the interface when an electric current is passed through the interconnect structure. A process includes the selective deposition of copper onto an exposed region (23) of the first metal interconnect layer (16), and onto the upper portion the via plug (28), followed by an anneal in forming gas to form the copper reservoirs (36, 37).
    • 金属互连结构包括位于耐火金属通孔塞(28)和第一和第二金属互连层(16,32)之间的铜界面层(24,30)。 铜界面层(24,30)被限制在覆盖在第一互连层(16)上并包含通孔塞(28)的绝缘层(20)中的通路孔(22)的区域中。 对界面层(24,30)进行退火处理,以在与界面层(24,30)相邻的互连层(16,32)中提供铜储存器(36,37)。 当电流通过互连结构时,铜储存器(36,37)连续补充从界面耗尽的铜。 一种方法包括将铜选择性沉积在第一金属互连层(16)的暴露区域(23)上,并在上部通孔塞(28)上,然后在形成气体中进行退火以形成铜储存器 36,37)。
    • 4. 发明授权
    • Refractory metal capped low resistivity metal conductor lines and vias
    • 耐火金属封盖的低电阻金属导线和通孔
    • US5300813A
    • 1994-04-05
    • US841967
    • 1992-02-26
    • Rajiv V. JoshiJerome J. CuomoHormazdyar M. DalalLouis L. Hsu
    • Rajiv V. JoshiJerome J. CuomoHormazdyar M. DalalLouis L. Hsu
    • H01L21/28H01L21/312H01L21/316H01L21/318H01L21/768H01L23/498H01L23/522H01L23/532H01L29/440H01L29/460
    • H01L21/76843H01L21/76838H01L21/7684H01L21/76847H01L21/76849H01L21/76852H01L21/76877H01L23/49866H01L23/53223H01L23/53228H01L23/53233H01L23/53238H01L2924/0002H01L2924/09701Y10S148/015Y10S257/915Y10S438/959
    • A contact structure for a semiconductor device having a first refractory metal layer formed only at the bottom of a contact hole. The first refractory metal is selected from a group comprising titanium (Ti), titanium alloys or compounds such as Ti/TiN, tungsten (W), titanium/tungsten (Ti/W) alloys, or chromium (Cr) or tantalum (Ta) and their alloys or some other suitable material. A low resistivity layer comprising a single, binary or ternary metalization is deposited over the first refractory metal layer in the contact hole by a method such as PVD using evaporation or collimated sputtering. The low resistivity layer has side walls which taper inwardly toward one another with increasing height of the layer and the low resistivity layer does not contact the side walls of the contact hole. The low resistivity layer may be Al.sub.x Cu.sub.y (x+y=1; x.gtoreq.0, y.gtoreq.0), ternary alloys such as Al-Pd-Cu or multicomponent alloys such as Al-Pd-Nb-Au. A second refractory metal layer is deposited over the low resistivity layer. The second refractory metal layer may be tungsten, cobalt, nickel, molybdenum or alloys/compounds such as Ti/TiN. The first and second refractory metal layers completely encapsulate the low resistivity layer. The first and second refractory metal layers can comprise an alloy containing silicon with a higher incorporated silicon content near the top of the contact hold present as a distinct or graded composition than at a location closer to the bottom of the contact hole.
    • 一种用于半导体器件的接触结构,其具有仅在接触孔的底部形成的第一难熔金属层。 第一难熔金属选自钛(Ti),钛合金或Ti / TiN,钨(W),钛/钨(Ti / W)合金或铬(Cr)或钽(Ta) 及其合金或其他合适的材料。 包含单一二元或三元金属化的低电阻率层通过诸如使用蒸发或准直溅射的PVD的方法沉积在接触孔中的第一难熔金属层上。 低电阻率层具有随着层的高度逐渐向内逐渐向内逐渐变细的侧壁,低电阻层不接触接触孔的侧壁。 低电阻率层可以是AlxCuy(x + y = 1; x> = 0,y> = 0),诸如Al-Pd-Cu的三元合金或诸如Al-Pd-Nb-Au的多组分合金。 在低电阻率层上沉积第二难熔金属层。 第二耐火金属层可以是钨,钴,镍,钼或诸如Ti / TiN的合金/化合物。 第一和第二难熔金属层完全封装低电阻率层。 第一和第二难熔金属层可以包含含有硅的合金,其中接合保持层的顶部附近具有更高的掺入硅含量,作为不同或分级的组成,而不是靠近接触孔底部的位置。