会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Ambient temperature micro-bolometer control, calibration, and operation
    • 环境温度微量热仪的控制,校准和操作
    • US06267501B1
    • 2001-07-31
    • US09283274
    • 1999-04-01
    • Martin A. WandKenneth RachelsJohn F. BradyMichael WeinsteinDavid D. Ratcliff
    • Martin A. WandKenneth RachelsJohn F. BradyMichael WeinsteinDavid D. Ratcliff
    • G01J520
    • H04N5/2178G01J5/20
    • A method for measuring the temperature of a scene using a detector having at least one reference pixel, with an integratable sampling circuit associated with each pixel. Initially, an ambient reference temperature is observed with the reference pixel(s) to provide a parameter, generally voltage, indicative of that temperature to provide a constant voltage output indicating that temperature by varying the sampling circuit integration time. Each non-reference pixel is exposed to different scene and ambient temperatures and the integration time for each set of data for each pixel is recorded. For each pixel, an equation is provided relating integration time to pixel voltage when the ambient temperature and the scene temperature are the same to correct for offsets and an equation is provided relating integration time and offset corrected pixel value to the difference between the ambient temperature and the scene temperature when the ambient temperature and scene temperature differ for correction of responsivity. An equation is provided relating integration time to ambient temperature for calculating ambient temperature. The voltage level for each of the pixels and the integration is determined, the offset correction for each pixel is calculated based upon the integration time and the offset correction is applied to the pixel value for each pixel. The responsivity corrected value is calculated for each pixel based upon the integration time and the offset corrected pixel value. The ambient temperature is calculated based upon the integration time and the temperature difference between the ambient temperature and the scene temperature for each pixel which is calculated based upon the responsivity corrected pixel value using a scale factor determined during calibration. The ambient temperature and the difference between the ambient and the scene temperatures are added to obtain the actual scene temperature.
    • 一种使用具有至少一个参考像素的检测器来测量场景的温度的方法,具有与每个像素相关联的可积分采样电路。 首先,利用参考像素观察环境参考温度,以提供指示该温度的参数,通常是电压,以通过改变采样电路积分时间来提供指示温度的恒定电压输出。 每个非参考像素暴露于不同的场景和环境温度,并记录每个像素的每组数据的积分时间。 对于每个像素,当环境温度和场景温度相同以提供偏移量时,提供了与像素电压相关的积分时间的等式,并且提供了将积分时间和偏移校正像素值与环境温度和 当环境温度和场景温度不同时,对场景温度进行校正。 提供了一个方程式,将积分时间与环境温度相关,以计算环境温度。 确定每个像素和积分的电压电平,基于积分时间计算每个像素的偏移校正,并且将偏移校正应用于每个像素的像素值。 基于积分时间和偏移校正像素值,针对每个像素计算响应度校正值。 基于积分时间和基于使用在校准期间确定的比例因子的响应度校正像素值计算的每个像素的环境温度和场景温度之间的温度差来计算环境温度。 添加环境温度和环境温度与场景温度之间的差异,以获得实际场景温度。
    • 3. 发明授权
    • Fabrication of amorphous silicon/amorphous silicon germanium NI1PI2N infrared position detectors
    • 非晶硅/非晶硅锗NI1PI2N红外位置检测器的制造
    • US06680478B2
    • 2004-01-20
    • US10021011
    • 2001-12-19
    • Huey-Liang HwangYeu-Long JiangKlaus Yung-Jane HsuCho-Jen Tsai
    • Huey-Liang HwangYeu-Long JiangKlaus Yung-Jane HsuCho-Jen Tsai
    • G01J520
    • H01L31/1055H01L31/11
    • Amorphous silicon/amorphous silicon germanium NI1PI2N position detectors are fabricated to suppress visible light and increase detection of infrared light. The material of I1 layer is amorphous silicon or amorphous silicon germanium used to absorb visible light, and material of I2 layer is amorphous silicon germanium or amorphous germanium used to absorb infrared light. A suppression of signal due to the absorption of the visible light and amplification of signals due to absorption of the infrared light can be obtained when the NI1P diode is forward biased and the P12N diode is reverse biased. The optical band gap of the I1 and I2 layers can be controlled by the Si/Ge atomic ratio. The suppression of visible light and enhanced detection of infrared light may be tuned by controlling thickness and optical band gaps of the I1 and I2 layers. The amorphous silicon and amorphous silicon germanium layers may be deposited by square-wave modulation at 13.56 MHz.
    • 制造非晶硅/非晶硅锗NI1PI2N位置检测器以抑制可见光并增加红外光的检测。 I1层的材料是用于吸收可见光的非晶硅或非晶硅锗,I2层的材料是用于吸收红外光的非晶硅锗或无定形锗。 当NI1P二极管正向偏置且P12N二极管反向偏置时,可以获得由于吸收可见光而导致的信号抑制和由于吸收红外光而引起的信号放大。 可以通过Si / Ge原子比来控制I1和I2层的光学带隙。 可以通过控制I1和I2层的厚度和光学带隙来调节对可见光的抑制和红外光的增强检测。 可以通过13.56MHz的方波调制沉积非晶硅和非晶硅锗层。
    • 4. 发明授权
    • Polarization-sensitive corrugated quantum well infrared photodetector array
    • 极化波纹量子阱红外光电探测器阵列
    • US06410917B1
    • 2002-06-25
    • US09677651
    • 2000-10-03
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • G01J520
    • H01L27/14601G01J4/04G01J5/20H01L27/1465
    • A polarization-sensitive infrared (IR) detector array for use in infrared cameras and other IR based instruments, is comprised of multiple corrugated quantum well infrared photodetector elements (C-QWIP) that form a unitary detector unit (cell). The array is preferably two-dimensional, which can detect polarization contrast of an observed object in a scene. Each detector unit (cell) is formed by a group of C-QWIP detector elements having different groove orientations and cross sections. Each detector unit (cell) has at least two C-QWIP detector elements with their respective corrugations orthogonally oriented. Infrared detection by these detector cells is primarily by polarization contrast, compared to intensity contrast, which is well known in the art. By measuring polarization of reflected light from the observed object, the type of material can also be identified. A first array embodiment of the invention comprises four C-QWIP elements that form a cell. The second array embodiment of the invention comprises a detector having two C-QWIPs to form a detector cell.
    • 用于红外相机和其他基于IR的仪器的偏振敏感红外(IR)检测器阵列由多个波纹量子阱红外光电探测器元件(C-QWIP)组成,其形成一体的检测器单元(单元)。 阵列优选是二维的,其可以检测场景中被观察物体的偏振对比度。 每个检测器单元(单元)由具有不同凹槽取向和横截面的一组C-QWIP检测器元件形成。 每个检测器单元(单元)具有至少两个C-QWIP检测器元件,其各自的波形正交定向。 这些检测器单元的红外检测主要是通过偏振对比度,与本领域公知的强度对比相比。 通过测量来自观察对象的反射光的偏振,还可以识别材料的类型。 本发明的第一阵列实施例包括形成单元的四个C-QWIP元件。 本发明的第二阵列实施例包括具有两个C-QWIP以形成检测器单元的检测器。
    • 5. 发明授权
    • Infrared sensor and manufacturing method thereof
    • 红外线传感器及其制造方法
    • US06573504B2
    • 2003-06-03
    • US09819596
    • 2001-03-29
    • Yoshinori IidaKeitaro ShigenakaNaoya Mashio
    • Yoshinori IidaKeitaro ShigenakaNaoya Mashio
    • G01J520
    • H01L31/103G01J5/10H01L27/1463H01L27/14649H01L27/14683H01L31/024H01L31/035281Y02E10/50
    • An object of the present invention is to provide a high-sensitivity infrared sensor. According to the present invention, a support member for supporting a sensor portion in a cavity structure is formed to be remarkably thin as compared with a conventional structure, a sectional area of the support member is considerably reduced, heat conductance can remarkably be reduced and, as a result, the infrared sensor having a remarkably high sensitivity can be obtained. Moreover, according to the present invention, since an insulating layer of a support member area is etched, and a sacrifice silicon film is embedded in the area, an aspect ratio of an insulating layer RIE for forming a support leg is remarkably reduced. A manufacturing process is facilitated, a sectional area of the support leg is further reduced as a secondary effect, and the sensitivity of the infrared sensor can further be enhanced.
    • 本发明的目的是提供一种高灵敏度红外传感器。 根据本发明,与传统结构相比,用于支撑腔结构中的传感器部分的支撑构件形成为非常薄,支撑构件的截面积显着减小,导热性可以显着降低, 结果,可以获得具有非常高的灵敏度的红外线传感器。 此外,根据本发明,由于蚀刻了支撑构件区域的绝缘层,并且在该区域中埋设牺牲硅膜,所以用于形成支撑腿的绝缘层RIE的纵横比显着降低。 便于制造过程,作为副作用,支撑腿的截面积进一步减小,并且可以进一步提高红外线传感器的灵敏度。
    • 8. 发明授权
    • Thermal infrared detecting device
    • 热红外检测装置
    • US06339220B1
    • 2002-01-15
    • US09040569
    • 1998-03-18
    • Naoki Oda
    • Naoki Oda
    • G01J520
    • H01L31/09G01J5/20
    • A thermal infrared detecting device includes a lower layer portion having a readout circuit, and an upper layer portion having a bolometer thin film covered with an insulating protective film to perform heat/resistance conversion. The upper layer portion and the lower layer portion are spaced apart from each other while sandwiching a vacuum or sealed gas to form a thermal isolation structure, and also electrically connected to each other through an electrode film formed on the insulating protective film or in the insulating protective film. The bolometer thin film also serves as an infrared absorption film.
    • 热红外线检测装置包括具有读出电路的下层部分和具有覆盖有绝缘保护膜的测辐射热计薄膜以进行热/电阻转换的上层部分。 上层部分和下层部分彼此间隔开,同时夹住真空或密封气体以形成热隔离结构,并且还通过形成在绝缘保护膜上的电极膜或绝缘保护膜中的电极膜彼此电连接 保护膜。 测辐射热计薄膜还用作红外吸收膜。
    • 10. 发明授权
    • Infrared detector
    • 红外探测器
    • US06777682B2
    • 2004-08-17
    • US10128570
    • 2002-04-24
    • Tomohiro IshikawaHirofumi Yagi
    • Tomohiro IshikawaHirofumi Yagi
    • G01J520
    • G01J5/08G01J5/0853G01J5/20H01L27/14649H01L27/14687
    • An infrared detector includes a semiconductor substrate having a hollow, a single crystal silicon thin film opposite the hollow at a distance from the semiconductor substrate, thermoelectric converters embedded in the single crystal silicon thin film and converting heat energy generated by infrared light irradiating the single crystal silicon thin film into an electric signal, a first connecting layer embedded in the single crystal silicon thin film and electrically connecting the thermoelectric converters to each other and a second connecting layer for transmitting the electric signal output by the thermoelectric converters to a wire in the semiconductor substrate. In the infrared detector, at least one of the first and second connecting layers is a silicon compound.
    • 红外检测器包括:半导体衬底,具有中空部分,与半导体衬底相距一定距离的中空部分的单晶硅薄膜;嵌入在单晶硅薄膜中的热电转换器,转换由照射单晶的红外光产生的热能; 将硅薄膜变成电信号,将第一连接层嵌入在单晶硅薄膜中并将热电转换器彼此电连接;以及第二连接层,用于将由热电转换器输出的电信号传输到半导体中的导线 基质。 在红外检测器中,第一和第二连接层中的至少一个是硅化合物。