会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Quantum grid infrared photodetector
    • 量子网红外光电探测器
    • US5485015A
    • 1996-01-16
    • US297344
    • 1994-08-25
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • H01L31/0236H01L31/0352H01L31/109
    • H01L31/0352H01L31/0236Y02E10/50
    • A quantum grid infrared photodetector (QGIP) includes a semiconductor substrate with a quantum well infrared photodetector (QWIP) mounted thereon. The QWIP includes a lower contact layer formed on a planar surface of the substrate and a stack of alternate planar barrier layers and planar well layers sandwiched between the lower contact layer and an upper contact layer. The planes of the barrier layers and well layers are substantially parallel to the plane of the planar surface. A plurality of single-slit diffraction units are arranged as a grid in the stack for diffracting incident infrared radiation into a continuum of radiation components directed toward the well layers at different angles with respect to the planes of the well layers. The diffraction units are composed of cavities that extend through the barrier layers, the well layers and the upper contact layer. The cavities have rectangular, square and round shapes and are arranged in rows and columns to form the grid.
    • 量子光栅红外光电探测器(QGIP)包括一个安装有量子阱红外光电探测器(QWIP)的半导体衬底。 QWIP包括形成在基板的平面表面上的下接触层和夹在下接触层和上接触层之间的交替的平面阻挡层和平面阱层的堆叠。 阻挡层和阱层的平面基本平行于平面的平面。 多个单狭缝衍射单元被布置为堆叠中的格栅,用于将入射的红外辐射衍射成相对于阱层的平面以不同角度指向阱层的连续的辐射分量。 衍射单元由延伸穿过阻挡层,阱层和上接触层的空腔构成。 这些空腔具有矩形,正方形和圆形,并以行和列排列形成网格。
    • 3. 发明授权
    • Photodetectors using resonance and method of making
    • 光电探测器采用共振和制作方法
    • US08704209B2
    • 2014-04-22
    • US13240125
    • 2011-09-22
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • H01L31/0232G06F9/455
    • H01L27/14601B82Y20/00H01L31/02165H01L31/02327H01L31/035236H01L31/035281H01L31/09Y02E10/50
    • An infrared photodetector comprising: a thin contact layer substantially transparent to infrared light; an absorption layer positioned such that light admitted through the substantially transparent thin contact area passes through the absorption layer; the absorption layer being configured to utilize resonance to increase absorption efficiency; at least one reflective side wall adjacent to the absorption layer being substantially non-parallel to the incident light operating to reflect light into the absorption layer for absorption of infrared radiation; and a top contact layer positioned adjacent to the active layer. A method of designing a photodetector comprising selecting a type of material based upon the wavelength range to be detected; determining a configuration geometry; calculating the electromagnetic field distributions using a computer simulated design of the configuration geometry, and determining a quantum efficiency spectrum at the desired wavelength or wavelength range; whereby the effectiveness of the photodetector is simulated prior to fabrication.
    • 一种红外光电检测器,包括:对红外光基本上透明的薄接触层; 吸收层定位成使得通过基本上透明的薄接触区域的光通过吸收层; 吸收层被配置为利用共振来增加吸收效率; 与吸收层相邻的至少一个反射侧壁与入射光基本上不平行,以将光反射入吸收层以吸收红外辐射; 以及邻近活性层定位的顶部接触层。 一种设计光电检测器的方法,包括基于要检测的波长范围选择一种材料; 确定配置几何; 使用配置几何的计算机模拟设计来计算电磁场分布,以及在期望的波长或波长范围内确定量子效率光谱; 由此在制造之前模拟光电检测器的有效性。
    • 6. 发明授权
    • Wide-range multicolor IR detector
    • 宽范围多色红外探测器
    • US5198659A
    • 1993-03-30
    • US867726
    • 1992-03-23
    • Doran D. SmithMitra DuttaKwong-Kit Choi
    • Doran D. SmithMitra DuttaKwong-Kit Choi
    • H01L31/0352H01L31/101
    • B82Y20/00H01L31/035236H01L31/101
    • An IR photodetector including an IR semiconductor detector with conductive layers on opposite, parallel surfaces. A semiconductor substrate supports the semiconductor IR detector. A circuit is connected across the semiconductor IR detector to provide a bias voltage and for measuring current flow through the semiconductor IR detector. The semiconductor IR detector has a lattice structure made up of a series of potential wells separated by relatively wide potential barriers such that each well has two confined energy levels. A thin spike barrier is placed in the center of alternate potential wells to tailor the absorption characteristics of the semiconductor IR detector. Multicolor operation is achieved by selecting the appropriate well widths for a first group of potential wells and by placing thin spike barriers in a second group of potential wells that are alternately placed between the wells of the first group.
    • 一种红外光电检测器,其包括在相对的平行表面上具有导电层的IR半导体检测器。 半导体衬底支撑半导体IR检测器。 电路跨越半导体IR检测器连接以提供偏置电压并用于测量通过半导体IR检测器的电流。 半导体IR检测器具有由相当宽的势垒隔开的一系列势阱组成的晶格结构,使得每个阱具有两个限制能级。 薄的尖峰势垒置于交替势阱的中心,以调整半导体IR检测器的吸收特性。 通过选择第一组潜在井的适当的井宽以及将交替放置在第一组的井之间的第二组潜在井中的薄的尖峰阻挡层放置来实现多色操作。
    • 7. 发明授权
    • Polarization-sensitive corrugated quantum well infrared photodetector array
    • 极化波纹量子阱红外光电探测器阵列
    • US06410917B1
    • 2002-06-25
    • US09677651
    • 2000-10-03
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • G01J520
    • H01L27/14601G01J4/04G01J5/20H01L27/1465
    • A polarization-sensitive infrared (IR) detector array for use in infrared cameras and other IR based instruments, is comprised of multiple corrugated quantum well infrared photodetector elements (C-QWIP) that form a unitary detector unit (cell). The array is preferably two-dimensional, which can detect polarization contrast of an observed object in a scene. Each detector unit (cell) is formed by a group of C-QWIP detector elements having different groove orientations and cross sections. Each detector unit (cell) has at least two C-QWIP detector elements with their respective corrugations orthogonally oriented. Infrared detection by these detector cells is primarily by polarization contrast, compared to intensity contrast, which is well known in the art. By measuring polarization of reflected light from the observed object, the type of material can also be identified. A first array embodiment of the invention comprises four C-QWIP elements that form a cell. The second array embodiment of the invention comprises a detector having two C-QWIPs to form a detector cell.
    • 用于红外相机和其他基于IR的仪器的偏振敏感红外(IR)检测器阵列由多个波纹量子阱红外光电探测器元件(C-QWIP)组成,其形成一体的检测器单元(单元)。 阵列优选是二维的,其可以检测场景中被观察物体的偏振对比度。 每个检测器单元(单元)由具有不同凹槽取向和横截面的一组C-QWIP检测器元件形成。 每个检测器单元(单元)具有至少两个C-QWIP检测器元件,其各自的波形正交定向。 这些检测器单元的红外检测主要是通过偏振对比度,与本领域公知的强度对比相比。 通过测量来自观察对象的反射光的偏振,还可以识别材料的类型。 本发明的第一阵列实施例包括形成单元的四个C-QWIP元件。 本发明的第二阵列实施例包括具有两个C-QWIP以形成检测器单元的检测器。
    • 8. 发明授权
    • Infrared hot electron transistor with a superlattice base
    • 红外热电子晶体管与超晶格基极
    • US5477060A
    • 1995-12-19
    • US82655
    • 1993-06-25
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • H01L29/15H01L31/0352H01L29/06H01L31/0328H01L31/0336
    • B82Y20/00H01L29/155H01L31/035236Y10S977/759Y10S977/761Y10S977/936
    • A semiconductor infrared detector having a transistor structure with a superlattice base. The superlattice base is between a multiple quantum well (MQW) structure and an electron energy high pass filter. The superlattice base restricts electrons to minibands resulting in no overlap in energy between the energies of the photoelectrons and the dark electrons. As a result, more photoelectrons reach the collector, and the emitter to collector photocurrent transfer ratio is increased. The increased transfer ratio results in increased sensitivity of the detector. The superlattice base between the MQW structure and the electron energy high pass filter comprises multiple alternating wells and barriers. The wells are preferably made of GaAs and the barriers are preferably made of Al.sub.x Ga.sub.1-x As, where x is equal to 0.25. However, alternate embodiments may include all the combinations of the Al molar ratio x in the barriers in the light sensitive MQW region, the superlattice base, and the electron energy high pass filter. The minibands created in the superlattice base confines the photoelectrons into a miniband by reducing the phonon emission rate, and removing the available states between the minibands.
    • 一种半导体红外检测器,具有具有超晶格基极的晶体管结构。 超晶格基极在多量子阱(MQW)结构和电子能量高通滤波器之间。 超晶格基极限制电子到微型电子束,导致光电子能量和暗电子的能量之间的能量没有重叠。 结果,更多的光电子到达集电极,并且发射极与集电极之间的光电流传递比增加。 增加的传送比导致检测器的灵敏度增加。 MQW结构和电子能量高通滤波器之间的超晶格基极包括多个交替的阱和势垒。 阱优选由GaAs制成,并且阻挡层优选由Al x Ga 1-x As制成,其中x等于0.25。 然而,替代实施例可以包括光敏MQW区域,超晶格基极和电子能量高通滤波器中的屏障中的Al摩尔比x的所有组合。 在超晶格基础上创建的迷你频带通过降低声子发射速率和去除迷你频带之间的可用状态将光电子限制在迷你频带内。
    • 9. 发明授权
    • Voltage-tunable, multicolor infrared detectors
    • 电压可调谐,多色红外探测器
    • US5384469A
    • 1995-01-24
    • US79793
    • 1993-07-21
    • Kwong-Kit Choi
    • Kwong-Kit Choi
    • H01L31/0352H01L31/06
    • B82Y20/00H01L31/035236
    • A tunable radiation detector comprises a superlattice structure having a rality of quantum well units each separated by a first potential barrier and each having at least two doped quantum wells separated by a second potential barrier. The wells each have a lower energy level and a higher energy level. The first potential barriers substantially impede electrons at the lower levels from tunneling therethrough. The second potential barriers permit electrons at the lower levels to tunnel therethrough and prevent energy-level coupling between adjacent ones of the doped quantum wells. A biasing circuit is connected across the semiconductor superlattice structure. A photocurrent sensor is provided for measuring the amount of radiation absorbed by the semiconductor superlattice structure. The superlattice structure is made a part of a hot-electron transistor for providing amplification.
    • 可调谐辐射检测器包括具有多个量子阱单元的超晶格结构,每个量子阱单元由第一势垒隔开,并且每个均具有由第二势垒隔开的至少两个掺杂量子阱。 这些井各自具有较低的能级和较高的能级。 第一个潜在的障碍基本上阻碍了较低级别的电子穿透隧穿。 第二个势垒允许较低电平的电子穿过其中,并阻止相邻的掺杂量子阱之间的能级耦合。 偏置电路跨越半导体超晶格结构连接。 提供了一种用于测量由半导体超晶格结构吸收的辐射量的光电流传感器。 超晶格结构被制成用于提供放大的热电子晶体管的一部分。