会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for a digital mass flow controller
    • 数字质量流量控制器的系统和方法
    • US06714878B2
    • 2004-03-30
    • US10062080
    • 2002-01-31
    • Emmanuel Vyers
    • Emmanuel Vyers
    • G01F100
    • G01F1/6847G05D7/0635Y10T137/7759
    • A method for controlling the gas flow within a digital mass flow controller. The method calculates a digitally enhanced flow rate signal that more accurately represents an actual flow rate through the digital mass flow controller. The digitally enhanced flow rate is calculated using a sensed flow rate signal output from a flow sensor, a scaled first derivative of the sensed flow rate signal, and a scaled, filtered second derivative of the sensed flow rate signal. A set-point signal is compared to the digitally enhanced flow rate signal to generate a digital error signal. The digital error signal is provided to a digitally realized PI (proportional integral) controller. The PI controller generates a digital control signal which is used to control a valve in the digital mass flow controller.
    • 一种用于控制数字质量流量控制器内的气体流量的方法。 该方法计算一个数字增强型流量信号,该信号更准确地表示通过数字质量流量控制器的实际流量。 使用从流量传感器输出的感测流量信号,感测流量信号的缩放一阶导数和感测流量信号的经缩放的滤波二阶导数计算数字增强流量。 将设定点信号与数字增强流量信号进行比较以产生数字误差信号。 数字误差信号提供给数字实现的PI(比例积分)控制器。 PI控制器产生数字控制信号,用于控制数字质量流量控制器中的阀门。
    • 4. 发明授权
    • Method and apparatus for operating coriolis flowmeters at cryogenic temperatures
    • 在低温下运行科里奥利流量计的方法和装置
    • US06512987B1
    • 2003-01-28
    • US09533026
    • 2000-03-22
    • Andrew T. Pattern
    • Andrew T. Pattern
    • G01F100
    • G01F1/8413G01F1/8436G01F1/8477G01F15/024
    • A Coriolis flowmeter is operated to generate accurate output material flow information over a wide temperature range that includes cryogenic temperatures. Heretofore, temperature compensation was provided using linear expressions that erroneously assumed the value of Young's Modulus E varied linearly with temperature. This resulted in unacceptable output information errors. The Coriolis flowmeter of the present invention uses non-linear compensation information stored in memory to generate accurate non-linear temperature compensated material flow output information at all temperatures including cryogenic temperatures. In one embodiment, the stored non-linear information represents measured values of Young's Modulus E that are used to generate accurate temperature compensated material flow output information. In another embodiment, the measured values of Young's Modulus E are curve fitted to derive non-linear expressions that are stored for use in generating the accurate non-linear temperature compensated output information.
    • 科里奥利流量计可在包括低温温度的宽温度范围内产生准确的输出物流量信息。 迄今为止,使用错误地假设杨氏模量E的值与温度线性变化的线性表达式来提供温度补偿。 这导致不可接受的输出信息错误。 本发明的科里奥利流量计使用存储在存储器中的非线性补偿信息,在包括低温的所有温度下产生精确的非线性温度补偿材料流量输出信息。 在一个实施例中,所存储的非线性信息表示用于产生准确的温度补偿材料流输出信息的杨氏模量E的测量值。 在另一个实施例中,将杨氏模量E的测量值曲线拟合以得出存储用于产生准确的非线性温度补偿输出信息的非线性表达式。
    • 5. 发明授权
    • Vibrating conduit process parameter sensors, operating methods and computer program products utilizing complex modal estimation
    • 振动管道工艺参数传感器,操作方法和使用复杂模态估计的计算机程序产品
    • US06427127B1
    • 2002-07-30
    • US09116389
    • 1998-07-16
    • Timothy J. Cunningham
    • Timothy J. Cunningham
    • G01F100
    • G01F1/8413G01F1/8436G01F1/8477
    • A process parameter such as mass flow is determined in a vibrating conduit process parameter sensor using a complex modal transformation estimated from a plurality of motion signals representing motion of the parameter sensor conduit. According to an aspect of the invention, a complex eigenvector is provided representing motion of the conduit at the plurality of locations at a known mass flow. A plurality of motion signals is received from a plurality of motion transducers, the plurality of motion signals indicating motion at a plurality of locations on the conduit as a material flows through the conduit. A complex modal transformation relating the received plurality of motion signals to the complex eigenvector is estimated. Mass flow through the conduit is estimated from the known mass flow and the estimated complex modal transformation. Related apparatus and computer program products are also discussed.
    • 在振动导管工艺参数传感器中使用由表示参数传感器导管的运动的多个运动信号估计的复模态变换来确定诸如质量流的过程参数。 根据本发明的一个方面,提供了一种复合特征向量,其表示在已知质量流下在多个位置处的导管的运动。 从多个运动换能器接收多个运动信号,所述多个运动信号指示作为材料的导管上的多个位置处的运动通过导管。 估计将接收的多个运动信号与复特征向量相关联的复数模态变换。 通过导管的质量流量是从已知质量流量和估计的复合模态变换估计的。 还讨论了相关设备和计算机程序产品。
    • 6. 发明授权
    • Method for computing three dimensional unsteady flows by solution of the vorticity equation on a Lagrangian mesh
    • 通过在拉格朗日网格上求解涡度方程来计算三维不稳定流的方法
    • US06424923B1
    • 2002-07-23
    • US09675894
    • 2000-09-29
    • Stephen A. HuyerJohn R. GrantJames S. UhlmanJeffrey S. Marshall
    • Stephen A. HuyerJohn R. GrantJames S. UhlmanJeffrey S. Marshall
    • G01F100
    • G01M9/06Y10T137/2065
    • A method for computing three dimensional unsteady flows about an object. An allowable error is established for the vorticity term calculations, and object geometry is provided giving surface points on an object and a region of interest. A mesh is established incorporating points on the object. Initial flow conditions are set at the surface. Vorticity values that will satisfy boundary conditions are set at the provided surface points. A new mesh is established incorporating the provided points and other points in the region of interest. Boxes are generated containing the provided points and other points. Velocities and pressures at each point are calculated from the flow conditions, vorticity values and boundary conditions., A time variable is incremented and each point is moved by applying the calculated velocity. Vorticity at each point is then recalculated. The method is iterated starting with the step of satisfying boundary conditions until the incremented time variable exceeds a predetermined value. satisfying boundary conditions until the incremented time variable exceeds a predetermined value.
    • 一种用于计算关于物体的三维不稳定流的方法。 为涡度项计算确定了一个允许的误差,并提供了物体几何形状,给出物体和感兴趣区域上的表面点。 建立了一个在物体上包含点的网格。 初始流量条件设置在表面。 满足边界条件的涡度值设定在提供的表面点。 建立一个新的网格,其中包含所提供的点和感兴趣区域中的其他点。 生成包含提供的点和其他点的框。 从流动条件,涡度值和边界条件计算每个点的速度和压力。时间变量递增,并且通过应用计算的速度移动每个点。 然后重新计算每个点的涡度。 该方法从满足边界条件的步骤开始迭代,直到递增时间变量超过预定值。 满足边界条件,直到递增时间变量超过预定值。
    • 8. 发明授权
    • Apparatus and method for predicting clear air turbulence
    • 用于预测空气湍流的装置和方法
    • US06237405B1
    • 2001-05-29
    • US09431468
    • 1999-11-01
    • Kenrick R. Leslie
    • Kenrick R. Leslie
    • G01F100
    • G01J5/0014G01S11/02G01W1/00G01W2001/003
    • The invention provides a system for passive measurement of atmospheric temperature using a passive direction detector for detecting the energy of a narrow wavelength band emanating from a volume of atmospheric gas. The resulting signal can be associated with an effective temperature. The effective temperature can be associated with an effective range. The system generates a temperature map which can determine, at predetermined time intervals, atmospheric temperatures in an azimuth plane associated with a predefined range from the detector. The temperature map can then be used to calculate temperature gradients that in turn can be used to compute the average Richardson number over an atmospheric layer and other atmospheric conditions to predict the presence of clear air turbulence.
    • 本发明提供了一种使用被动方向检测器来无源测量大气温度的系统,用于检测从一定体积的大气气体发出的窄波段的能量。 所得到的信号可以与有效温度相关联。 有效温度可以与有效范围相关联。 系统产生温度图,该温度图可以以预定的时间间隔确定与来自检测器的预定义范围相关联的方位平面中的大气温度。 然后可以使用温度图来计算温度梯度,该梯度又可用于计算大气层和其他大气条件下的平均理查森数,以预测空气湍流的存在。
    • 9. 发明授权
    • Method of measuring the propagation time of a sound signal in a fluid by means of a zero-crossing of said sound signal
    • 通过所述声音信号的零交叉来测量流体中的声音信号的传播时间的方法
    • US06226598B1
    • 2001-05-01
    • US09205032
    • 1998-12-04
    • Robert De VanssayJérôme Juillard
    • Robert De VanssayJérôme Juillard
    • G01F100
    • G01F1/667
    • Measuring the propagation time of a sound signal between two spaced-apart transducers disposed in a fluid flow involves determining the zero-crossing of the signal. Each received sound signal is sampled and digitized, then for each period of the sampled and digitized signal the maximum amplitudes P− and P+ of the two lobes of the period under examination are determined. The ratio of the amplitudes are compared to an ideal amplitude ratio between the maximum amplitudes Pi− and Pi+ of two lobes of a first ideal characteristic period. The first zero-crossing of the characteristic oscillations of the signal is determined. And, as a function of the result of the comparison relative to a threshold value Gs, the period under examination is accepted or ignored as a characteristic period. The zero-crossing thereof is determined or not determined between the two lobes of the characteristic period.
    • 测量设置在流体流中的两个间隔开的换能器之间的声音信号的传播时间包括确定信号的过零点。 每个接收到的声音信号被采样和数字化,然后对于采样和数字化信号的每个周期,确定检查期间两个波瓣的最大振幅P和P +。 将幅度比与第一理想特征周期的两个波瓣的最大振幅P 1和Pi +之间的理想振幅比进行比较。 确定信号的特征振荡的第一个零交叉。 并且,作为比较结果相对于阈值Gs的函数,被检查的周期被接受或忽略为特征期。 其特征周期的两个波瓣之间确定或不确定其零交叉。
    • 10. 发明授权
    • Sewer flow monitoring method and system
    • 污水流量监测方法和系统
    • US06807494B2
    • 2004-10-19
    • US10092950
    • 2002-03-08
    • James S. SchutzbachPatrick L. Stevens
    • James S. SchutzbachPatrick L. Stevens
    • G01F100
    • G01F1/002
    • A method and system for monitoring and analyzing flow in a sewer system includes the steps of using a monitoring assembly to collect data representative of actual flow volume of a fluid substance in a first location such as a sewer pipe, storing the actual flow volume data in a memory, maintaining previously stored data in the memory, determining a predicted flow volume and comparing the actual flow volume with the predicted flow volume to yield a difference value. The predicted flow volume is dependent on the data selected from the previously stored data and a day and time that corresponds to both the actual flow volume data and the data selected from the previously stored data. The predicted flow volume may also be dependent upon additional data corresponding to a rain event.
    • 用于监测和分析下水道系统中的流动的方法和系统包括以下步骤:使用监测组件收集表示第一位置(例如下水道管道)中流体物质的实际流量的数据,将实际流量数据存储在 存储器,将先前存储的数据保存在存储器中,确定预测流量并将实际流量与预测流量进行比较以产生差值。 预测流量取决于从先前存储的数据中选择的数据以及对应于实际流量数据和从先前存储的数据中选择的数据的日期和时间。 预测的流量也可以取决于对应于下雨事件的附加数据。