会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Varied trench depth for thyristor isolation
    • 用于晶闸管隔离的不同沟槽深度
    • US07015077B1
    • 2006-03-21
    • US10970085
    • 2004-10-21
    • Andrew HorchScott Robins
    • Andrew HorchScott Robins
    • H01L21/332
    • H01L29/74H01L21/76224H01L21/763H01L27/0817H01L29/0649
    • A semiconductor device is formed having a thyristor and trench arranged to electrically insulate an emitter region of the thyristor from another circuit structure. In one example embodiment of the present invention, a trench having a bottom portion with two different trench depths is etched in the substrate. A thyristor is formed having a control port in a trench and having an emitter region adjacent to the trench and below an upper surface of the substrate. A deeper portion of the trench electrically insulates the emitter region from the other circuit structure. The control port is capacitively coupled to the thyristor and to the other circuit structure (e.g., in response to at least one edge of a voltage pulse applied thereto). In one implementation, the trench further includes an emitter-access connector extending from the emitter region to an upper surface of the substrate. These approaches are also useful in high-density circuit applications, such as memory applications, where the semiconductor device is formed in close proximity with other circuitry, such as with other thyristors. In addition, the isolation approach is useful for applications where a cathode-down thyristor is used, such as when it is desirable to form the thyristor control port near a bottom portion of the thyristor. Moreover, the approaches discussed herein are useful for electrically isolating various portions of the semiconductor device using a relatively limited number of etching steps.
    • 形成半导体器件,其具有晶闸管和沟槽,其布置成将晶闸管的发射极区域与另一个电路结构电绝缘。 在本发明的一个示例性实施例中,在衬底中蚀刻具有具有两个不同沟槽深度的底部的沟槽。 晶闸管形成为具有沟槽中的控制端口,并且具有与沟槽相邻的发射极区域以及衬底的上表面下方。 沟槽的较深部分将发射极区域与另一个电路结构电绝缘。 控制端口电容耦合到晶闸管和另一电路结构(例如,响应于施加到晶闸管的电压脉冲的至少一个边缘)。 在一个实施方式中,沟槽还包括从发射极区延伸到衬底的上表面的发射器 - 接入连接器。 这些方法在诸如存储器应用的高密度电路应用中也是有用的,其中半导体器件形成在与其它电路(例如与其他晶闸管)相近的位置。 此外,隔离方法对于使用阴极 - 下降晶闸管的应用是有用的,例如当期望在晶闸管的底部附近形成晶闸管控制端口时。 此外,本文讨论的方法可用于使用相对有限数量的蚀刻步骤电绝缘半导体器件的各个部分。
    • 2. 发明授权
    • Geometric D/A converter for a delay-locked loop
    • 用于延迟锁定环路的几何D / A转换器
    • US06975260B1
    • 2005-12-13
    • US10986707
    • 2004-11-12
    • Shahram Abdollahi-AlibeikChaofeng Huang
    • Shahram Abdollahi-AlibeikChaofeng Huang
    • H03M1/66H03M1/68H03M1/74
    • H03M1/68H03M1/745
    • A geometric DAC architecture includes a series of substantially identical sub-DACs, each sub-DAC having n taps. The sub-DACs are fed from a bias-DAC having m=(total number of taps needed)/n taps. The output of each of the m taps is increased geometrically at a rate of kn. The geometric DAC architecture control lines desirably require only (m+n) taps compared with (m×n) taps for the simpler more conventional approach. Further, the geometric DAC architecture requires less real estate than the simpler more conventional approach, is easy to expand because it is modular, and generates an output current that is always monotonic, regardless of errors in transistor sizes and PVT variations. The n tap control lines are coded by alternately inverting n control line inputs between sub-DACs such that any state transition associated with the geometric DAC occurs with only one bit change in each of the control lines.
    • 几何DAC架构包括一系列基本相同的子DAC,每个子DAC具有n个抽头。 子DAC从具有m =(所需抽头总数)/ n抽头的偏置DAC馈送。 m个抽头中的每一个的输出以几何的方式以k 的速率增加。 对于更简单的更传统的方法,几何DAC架构控制线期望仅需要(m + n)个抽头与(m×n)抽头相比较。 此外,几何DAC架构比简单的更传统的方法需要更少的空间,由于它是模块化而容易扩展,并且产生总是单调的输出电流,而不管晶体管尺寸和PVT变化中的错误。 通过在子DAC之间交替地反转n个控制线输入来编码n个抽头控制线,使得与几何DAC相关联的任何状态转换在每个控制线中仅发生一个位改变。
    • 4. 发明授权
    • Sense amplifier based voltage comparator
    • 基于感应放大器的电压比较器
    • US06937085B1
    • 2005-08-30
    • US10423767
    • 2003-04-25
    • Tapan Samaddar
    • Tapan Samaddar
    • G11C7/06H03K3/356H03K17/296H03H11/26
    • G11C7/062H03K3/356139Y10T307/549
    • The voltage comparator of the present invention comprises a sense amplifier connected to a latch. The sense amplifier has a first input terminal for connecting to the input voltage under consideration and a second input terminal for connecting to the reference voltage. The sense amplifier generates two voltages of opposite logic values (i.e., high or low). A latch accepts these two voltages and generates an output voltage that is indicative of whether the voltage under consideration is higher or lower than the reference voltage. In another embodiment, a signal conditioning circuit is used to reduce the transients in the input voltage under consideration and perform level shifting function.
    • 本发明的电压比较器包括连接到锁存器的读出放大器。 读出放大器具有用于连接到考虑的输入电压的第一输入端子和用于连接到参考电压的第二输入端子。 读出放大器产生相反逻辑值的两个电压(即,高或低)。 闩锁接受这两个电压,并产生一个输出电压,该输出电压指示所考虑的电压是否高于或低于参考电压。 在另一个实施例中,使用信号调理电路来减少所考虑的输入电压的瞬变并执行电平转换功能。
    • 5. 发明授权
    • Self-aligned thin capacitively-coupled thyristor structure
    • 自对准薄电容耦合晶闸管结构
    • US06911680B1
    • 2005-06-28
    • US10890031
    • 2004-07-13
    • Andrew HorchScott RobinsFarid Nemati
    • Andrew HorchScott RobinsFarid Nemati
    • H01L21/331H01L27/11H01L29/74H01L29/745
    • H01L29/66242H01L27/11H01L29/7436H01L29/7455
    • A semiconductor memory device having a thyristor is manufactured in a manner that makes possible self-alignment of one or more portions of the thyristor. According to an example embodiment of the present invention, a gate is formed over a first portion of doped substrate. The gate is used to mask a portion of the doped substrate and a second portion of the substrate is doped before or after a spacer is formed. After the second portion of the substrate is doped, the spacer is then formed adjacent to the gate and used to mask the second portion of the substrate while a third portion of the substrate is doped. The gate and spacer are thus used to form self-aligned doped portions of the substrate, wherein the first and second portions form base regions and the third portion form an emitter region of a thyristor. In another implementation, the spacer is also adapted to prevent formation of salicide on the portion of the thyristor beneath the spacer, self-aligning the salicide to the junction between the second and third portions. In addition, dimensions such as width and other characteristics of the doped portions that are used to form a thyristor can be controlled without necessarily using a separate mask.
    • 制造具有晶闸管的半导体存储器件以能够使晶闸管的一个或多个部分自对准的方式。 根据本发明的示例性实施例,在掺杂衬底的第一部分上形成栅极。 栅极用于掩模掺杂衬底的一部分,并且衬底的第二部分在形成间隔物之前或之后被掺杂。 在衬底的第二部分被掺杂之后,然后在衬底的第三部分被掺杂的同时,将衬底形成为邻近栅极并用于掩蔽衬底的第二部分。 因此,栅极和间隔物用于形成衬底的自对准掺杂部分,其中第一和第二部分形成基极区,第三部分形成晶闸管的发射极区。 在另一实施方案中,间隔物还适于防止在间隔物下方的可控硅部分上形成自对准硅化物,使自对准硅化物与第二和第三部分之间的连接处。 此外,可以控制用于形成晶闸管的掺杂部分的宽度和其它特性的尺寸,而不必使用单独的掩模。
    • 6. 发明授权
    • Stability in thyristor-based memory device
    • 基于晶闸管的存储器件的稳定性
    • US06891205B1
    • 2005-05-10
    • US10666220
    • 2003-09-19
    • Hyun-Jin ChoFarid NematiScott Robins
    • Hyun-Jin ChoFarid NematiScott Robins
    • G11C11/39H01L29/74H01L29/749
    • H01L29/749G11C11/39H01L29/7436
    • A semiconductor device having a thyristor-based memory device exhibits improved stability under adverse operating conditions related to temperature, noise, electrical disturbances and light. In one particular example embodiment of the present invention, a semiconductor device includes a thyristor-based memory device that uses a shunt that effects a leakage current in the thyristor. The thyristor includes a capacitively-coupled control port and anode and cathode end portions. Each of the end portions has an emitter region and an adjacent base region. In one implementation, the current shunt is located between the emitter and base region of one of the end portions of the thyristor and is configured and arranged to shunt low-level current therebetween. In connection with an example embodiment, it has been discovered that shunting current in this manner improves the ability of the device to operate under adverse conditions that would, absent the shunt, result in inadvertent turn on, while keeping the standby current of the memory device to an acceptably low level.
    • 具有基于晶闸管的存储器件的半导体器件在与温度,噪声,电扰动和光线相关的不利操作条件下表现出改进的稳定性。 在本发明的一个具体示例实施例中,半导体器件包括基于晶闸管的存储器件,其使用在晶闸管中产生漏电流的分流器。 晶闸管包括电容耦合控制端口和阳极和阴极端部分。 每个端部具有发射极区域和相邻的基极区域。 在一个实施方案中,电流分流器位于晶闸管的一个端部的发射极和基极区域之间,并且被配置和布置成在它们之间分流低电平电流。 结合示例性实施例,已经发现,以这种方式分流电流提高了器件在不利条件下操作的能力,这种不利条件将在不存在分流的情况下导致无意中导通,同时保持存储器件的待机电流 达到可接受的低水平。
    • 9. 发明授权
    • Method and system for writing data to memory cells
    • 将数据写入存储单元的方法和系统
    • US07054191B1
    • 2006-05-30
    • US10860194
    • 2004-06-03
    • Rajesh Narendra GuptaScott Robins
    • Rajesh Narendra GuptaScott Robins
    • G11C11/39G11C11/34
    • G11C11/39
    • A first and a second set of memory cells are connected to the same first word line and second word line. At the commencement of data writing, the first word line is set up. The first set of memory cells is read and temporarily stored into a buffer. At about the same time, the bit lines of the second set of memory cells is set up. After completion of reading of the first set of memory cells, the bit lines of this set of memory cells are set up (while the setting up of the bit lines of the second set of memory cells continues). After the bit lines of both sets of memory cells are set up, the second word line is pulsed. At this time, written into both sets of memory cells begins, which comprises data previously read from the first set of memory cells and new data to be written into the second set of memory cells. It is found that this method reduces the overall write time.
    • 第一和第二组存储器单元连接到相同的第一字线和第二字线。 在数据写入开始时,第一个字线被设置。 第一组存储单元读取并临时存储到缓冲器中。 大约在同一时间,第二组存储器单元的位线被建立。 在完成第一组存储单元的读取之后,建立该组存储器单元的位线(同时第二组存储器单元的位线的设置继续)。 在两组存储器单元的位线被建立之后,第二字线被脉冲。 此时,开始写入两组存储器单元,其包括先前从第一组存储器单元读取的数据和要写入第二组存储器单元的新数据。 发现这种方法减少了整个写入时间。
    • 10. 发明授权
    • Single data line sensing scheme for TCCT-based memory cells
    • 基于TCCT的存储单元的单数据线感测方案
    • US07006398B1
    • 2006-02-28
    • US10977309
    • 2004-10-29
    • Sei-Seung YoonJin-Man HanSeong-Ook Jung
    • Sei-Seung YoonJin-Man HanSeong-Ook Jung
    • G11C11/00
    • H01L27/11G11C11/39
    • A sensing circuit including a sense amplifier to resolve a data signal generated by a memory cell is disclosed herein. The sensing circuit includes a bit line to receive the data signal, a first pre-charge device coupled to the bit line and configured to pre-charge the bit line, a device for providing a bias coupled to the bit line and configured to provide a bias to the bit line, and a reference node configured to be at least one pre-determined level. In one embodiment the pre-determined level is equal to a low potential such as ground and in another embodiment equal to a high potential such as VDD. One or more switching devices allows for the activation or deactivation of the pre-charge device allowing to pre-charge the bit line to a certain potential and the sensing circuit quickly and accurately determines whether a logical state of ‘1’ or ‘0’ is being applied to the bit line.
    • 本文公开了一种包括用于解析由存储器单元产生的数据信号的读出放大器的感测电路。 感测电路包括用于接收数据信号的位线,耦合到位线并被配置为对位线预充电的第一预充电器件,用于提供耦合到位线的偏置并被配置为提供 偏置到位线,以及被配置为至少一个预定电平的参考节点。 在一个实施例中,预定电平等于诸如地电位的低电位,而在另一实施例中等于诸如V DD的高电位。 一个或多个开关装置允许激活或去激活预充电装置,允许将位线预充电到特定电位,感测电路快速而准确地确定逻辑状态“1”或“0”是否为 应用于位线。