会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of fabricating semiconductor device with a high breakdown voltage between neighboring wells
    • 制造相邻孔之间具有高击穿电压的半导体器件的方法
    • US08148774B2
    • 2012-04-03
    • US12606634
    • 2009-10-27
    • Hidemitsu MoriKazuhiro TakimotoToshiyuki ShouKenji SasakiYutaka Akiyama
    • Hidemitsu MoriKazuhiro TakimotoToshiyuki ShouKenji SasakiYutaka Akiyama
    • H01L29/66H01L21/8238
    • H01L21/823892H01L21/26513H01L21/823493
    • To provide a semiconductor device in which an interval between first wells can be shortened by improving a separation breakdown voltage between the first wells and a method for manufacturing the same. A semiconductor device includes a first conductivity type semiconductor substrate 1, second conductivity type first wells 2 and 3 disposed on a surface layer of the semiconductor substrate 1 with a predetermined interval between them, a first conductivity type second well 4 disposed between the first wells 2 and 3 on the surface layer of the semiconductor substrate 1 and having an impurity concentration higher than that of the semiconductor substrate, a first conductivity type third well 5 at least disposed below the second well 4 in the semiconductor substrate 1 and having an impurity concentration higher than that of the semiconductor substrate 1 and lower than that of the second well 4, and a first conductivity type fourth well 11 at least disposed below the third well 5 in the semiconductor substrate 1 and having an impurity concentration higher than that of the semiconductor substrate 1 and lower than that of the second well 4.
    • 提供一种半导体器件,其中可以通过改善第一阱之间的分离击穿电压及其制造方法来缩短第一阱之间的间隔。 半导体器件包括第一导电类型半导体衬底1,设置在半导体衬底1的表面层上的第二导电类型的第一阱2和3之间的预定间隔,设置在第一阱2之间的第一导电类型第二阱4 并且在半导体衬底1的表面层上具有杂质浓度高于半导体衬底1的杂质浓度的第一导电类型第三阱5,至少设置在半导体衬底1中的第二阱4的下方并且杂质浓度更高 比半导体衬底1低,而低于第二阱4,以及第一导电类型的第四阱11,其至少设置在半导体衬底1中的第三阱5的下方,其杂质浓度高于半导体衬底的杂质浓度 1且低于第二孔4的厚度。
    • 4. 发明授权
    • Computer simulation method of silicon oxidation
    • 硅氧化计算机模拟方法
    • US06285970B1
    • 2001-09-04
    • US09200749
    • 1998-11-30
    • Yutaka Akiyama
    • Yutaka Akiyama
    • G06F760
    • G06F17/5018
    • A simulation method of Si oxidation is provided, which decreases the simulation time. A diffusion equation of oxidant is solved at individual nodes in a SiO2 region to calculate the surface concentration of the oxidant at the Si/SiO2 interface, resulting in the first value of the surface concentration of the oxidant at each of the nodes in the present time step. Then, the first value of the surface concentration of the oxidant at each of the nodes in the SiO2 region is adjusted to generate the second value of the surface concentration of the oxidant at each of the nodes in the SiO2 region in the present time step. Also, the second value of the surface concentration of the oxidant in the present time step is set as zero with respect to one of the nodes where the thickness increase of the SiO2 region has a value equal to or less than the specific small value. Simultaneously with this, the first value of the surface concentration of the oxidant is stored for a next time step. The stored first value of the surface concentration of the oxidant is added to a first value of the surface concentration of the oxidant obtained in the next time step, thereby producing a second value of the surface concentration of the oxidant in the next time step. The second value of the surface concentration of the oxidant is used in calculation of the thickness increase of the SiO2 region.
    • 提供了Si氧化的模拟方法,减少了模拟时间。 在SiO 2区域的各个节点处求解氧化剂的扩散方程,计算出Si / SiO2界面处氧化剂的表面浓度,得到当前时刻各节点氧化剂表面浓度的第一值 步。 然后,调整SiO 2区域中的每个节点处的氧化剂的表面浓度的第一值,以在当前时间步长中产生SiO 2区域中的每个节点处的氧化剂的表面浓度的第二值。 此外,当前时间步长中的氧化剂的表面浓度的第二值相对于其中SiO 2区域的厚度增加具有等于或小于特定小值的值的一个节点被设置为零。 同时,将氧化剂的表面浓度的第一值存储下一个时间步长。 将所存储的氧化剂的表面浓度的第一值加到在下一个时间步骤中获得的氧化剂的表面浓度的第一值,从而在下一个时间步骤中产生氧化剂的表面浓度的第二值。 氧化剂的表面浓度的第二个值用于计算SiO 2区域的厚度增加。
    • 5. 发明授权
    • Process simulation method for calculating a surface oxidant
concentration in oxidation process
    • 用于计算氧化过程中表面氧化剂浓度的过程模拟方法
    • US6044213A
    • 2000-03-28
    • US65900
    • 1998-04-24
    • Yutaka Akiyama
    • Yutaka Akiyama
    • H01L21/316G06F17/50G06F19/00G06Q50/00G06Q50/04H01L21/00G06F9/455
    • G06F17/5018G06F2217/16
    • The present invention provides a method of simulating a process for oxidation of silicon. The method comprises the following steps. A time "t" of oxidation calculation is set at zero. An effective surface oxidant concentration of a silicon surface exposed to an oxygen atmosphere is calculated assuming that a spontaneous silicon oxide film as an initial silicon oxide film extends over the silicon surface. The time "t" of oxidation calculation is forwarded by a predetermined time increment .DELTA.t. An oxidation rate is calculated by use of one of the effective surface oxidant concentration and the surface oxidant concentration. A new silicon surface is formed based upon the calculated oxidation rate and the time increment .DELTA.t. Variations in thickness of the silicon oxide film over time are found by a deformation calculation. There is verified whether or not the time "t" of oxidation calculation reaches a predetermined end time so that if the time "t" of oxidation calculation reaches the predetermined end time, then a current simulation is ended, while if the time "t" of oxidation calculation does not reach the predetermined end time, then an oxidant diffusion equation is solved for a deformed silicon oxide film to calculate the surface oxidant concentration of the silicon surface to be oxidized. A loop comprising the sequential third to seventh steps is repeated until the time "t" of oxidation calculation reaches the predetermined end time.
    • 本发明提供了一种模拟硅氧化工艺的方法。 该方法包括以下步骤。 氧化计算的时间“t”设定为零。 假设作为初始氧化硅膜的自发氧化硅膜在硅表面上延伸,计算暴露于氧气氛的硅表面的有效表面氧化剂浓度。 氧化计算的时间“t”以预定的时间增量DELTA t转发。 通过使用有效表面氧化剂浓度和表面氧化剂浓度之一计算氧化速率。 基于计算的氧化速率和时间增量DELTA t形成新的硅表面。 通过变形计算可以发现氧化硅膜随时间的变化。 验证氧化计算的时间“t”是否达到预定的结束时间,使得如果氧化计算的时间“t”达到预定的结束时间,则当前模拟结束,而如果时间“t” 的氧化计算未达到预定的结束时间,则对于变形的氧化硅膜求解氧化剂扩散方程,以计算待氧化的硅表面的表面氧化剂浓度。 重复包括顺序的第三到第七步骤的循环,直到氧化计算的时间“t”达到预定的结束时间。
    • 9. 发明申请
    • Narrow impedance conversion device
    • 窄阻抗转换器件
    • US20070176708A1
    • 2007-08-02
    • US11500943
    • 2006-08-09
    • Kanji OtsukaTamotsu UsamiYutaka Akiyama
    • Kanji OtsukaTamotsu UsamiYutaka Akiyama
    • H03H7/38
    • H01P5/02
    • An impedance conversion device has four conductors arranged so that the first and second conductors form a transmission line having a first characteristic impedance, the third and fourth conductors form a transmission line having the first characteristic impedance, the first and third conductors form a transmission line having a second characteristic impedance, and the second and fourth conductors form a third transmission line having the second characteristic impedance. The second and fourth conductors are interconnected at proximate ends through a resistance equal to the first characteristic impedance. The third and fourth conductors are interconnected at proximate ends through a resistance equal to the second characteristic impedance. The lateral dimensions of the impedance conversion device are small enough to permit insertion in a stacked pair line.
    • 阻抗转换装置具有四个导体,其布置成使得第一和第二导体形成具有第一特征阻抗的传输线,第三和第四导体形成具有第一特征阻抗的传输线,第一和第三导体形成传输线, 第二特征阻抗,第二和第四导体形成具有第二特性阻抗的第三传输线。 第二和第四导体通过等于第一特征阻抗的电阻在近端互连。 第三和第四导体通过等于第二特征阻抗的电阻在近端互连。 阻抗转换装置的横向尺寸足够小以允许插入堆叠的对线。