会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Grayscale reticle for precise control of photoresist exposure
    • 用于精确控制光刻胶曝光的灰度光罩
    • US07439187B2
    • 2008-10-21
    • US11588891
    • 2006-10-27
    • Yoshi OnoBruce D. UlrichPooran Chandra Joshi
    • Yoshi OnoBruce D. UlrichPooran Chandra Joshi
    • H01L21/00H01L21/302
    • G03F1/54G03F1/50Y10S438/942
    • A method of fabricating a grayscale reticule includes preparing a quartz substrate; depositing a layer of silicon-rich oxide on the quartz substrate; depositing a layer of silicon nitride as an oxidation barrier layer on the silicon-rich oxide layer; depositing and patterning a layer of photoresist; etching the silicon nitride layer with a pattern for the silicon nitride layer; removing the photoresist; cleaning the quartz substrate and the remaining layers; oxidizing the quartz substrate and the layers thereon, thereby converting the silicon-rich oxide layer to a transparent silicon dioxide layer; removing the remaining silicon nitride layer; forming the quartz substrate and the silicon dioxide thereon into a reticule; and using the reticule to pattern a microlens array.
    • 制造灰度网格的方法包括制备石英基片; 在石英衬底上沉积一层富硅氧化物; 在富硅氧化物层上沉积氮化硅层作为氧化阻挡层; 沉积和图案化一层光致抗蚀剂; 用氮化硅层的图案蚀刻氮化硅层; 去除光致抗蚀剂; 清洗石英衬底和其余层; 氧化石英衬底及其上的层,从而将富硅氧化物层转化为透明二氧化硅层; 去除剩余的氮化硅层; 在其上形成石英衬底和二氧化硅到网状物中; 并使用网状物来形成微透镜阵列。
    • 5. 发明授权
    • Thin film oxide interface
    • 薄膜氧化物界面
    • US07196383B2
    • 2007-03-27
    • US11046571
    • 2005-01-28
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • H01L29/772
    • H01L29/66757H01L29/4908H01L29/66772
    • An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.
    • 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。
    • 6. 发明授权
    • Plasma method for fabricating oxide thin films
    • 用于制造氧化物薄膜的等离子体方法
    • US06689646B1
    • 2004-02-10
    • US10295579
    • 2002-11-14
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • H01L2100
    • H01L29/66757H01L29/78603H01L29/78609
    • A method is provided for fabricating a thin film oxide. The method include forming a first silicon layer, applying a second silicon layer overlying the first silicon layer, oxidizing the second silicon layer at a temperature of less than 400° C. using an inductively coupled plasma source, and forming a thin film oxide layer overlying the first silicon layer. In some cases, the thin film oxide layer overlies the oxidized second silicon layer and is formed by a high-density plasma enhanced chemical vapor deposition process and an inductively coupled plasma source at a temperature of less than 400° C. In some cases, the thin film oxide layer and the first silicon layer are incorporated into a thin film transistor and the thin film oxide layer has a fixed oxide charge density of 3×1011 per square centimeter.
    • 提供了制造薄膜氧化物的方法。 该方法包括形成第一硅层,施加覆盖第一硅层的第二硅层,使用电感耦合等离子体源在小于400℃的温度下氧化第二硅层,以及形成覆盖层的薄膜氧化物层 第一硅层。 在一些情况下,薄膜氧化物层覆盖氧化的第二硅层,并且通过高密度等离子体增强化学气相沉积工艺和电感耦合等离子体源在低于400℃的温度下形成。在一些情况下, 薄膜氧化物层和第一硅层结合到薄膜晶体管中,并且薄膜氧化物层具有固定的氧化物电荷密度为3×10 11每平方厘米。
    • 7. 发明授权
    • Method of forming high-luminescence silicon electroluminescence device
    • 形成高发光硅电致发光器件的方法
    • US07259055B2
    • 2007-08-21
    • US11066713
    • 2005-02-24
    • Tingkai LiPooran Chandra JoshiWei GaoYoshi OnoSheng Teng Hsu
    • Tingkai LiPooran Chandra JoshiWei GaoYoshi OnoSheng Teng Hsu
    • H01L21/8238
    • H01L31/03046Y02E10/544Y02P70/521
    • A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
    • 提供一种用于形成高发光Si电致发光(EL)荧光体的方法,其具有由Si荧光体制成的EL器件。 该方法包括:用Si纳米晶体沉积富含氧的氧化物(SRO)膜,折射率在1.5至2.1范围内,孔隙率在5至20%的范围内; 并且在氧气氛中对SRO膜进行后退火。 DC溅射或PECVD工艺可用于沉积SRO膜。 在一个方面,该方法还包括:HF缓冲氧化物蚀刻(BOE)SRO膜; 并且再次氧化SRO膜,以在SRO膜中的Si纳米晶体周围形成SiO 2层。 在一个方面,SRO膜通过在氧气气氛中退火再次氧化。 以这种方式,在具有1至5纳米(nm)范围内的厚度的Si纳米晶体周围形成SiO 2层。
    • 8. 发明授权
    • High density plasma non-stoichiometric SiOxNy films
    • 高密度等离子体非化学计量的SiOxNy薄膜
    • US07807225B2
    • 2010-10-05
    • US11698623
    • 2007-01-26
    • Pooran Chandra JoshiApostolos T. VoutsasJohn W. Hartzell
    • Pooran Chandra JoshiApostolos T. VoutsasJohn W. Hartzell
    • C23C16/00
    • G02B1/10C23C16/308C23C16/509G02B1/11
    • A high-density plasma method is provided for forming a SiOXNY thin-film. The method provides a substrate and introduces a silicon (Si) precursor. A thin-film is deposited overlying the substrate, using a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, a SiOXNY thin-film is formed, where (X+Y 0). The SiOXNY thin-film can be stoichiometric or non-stoichiometric. The SiOXNY thin-film can be graded, meaning the values of X and Y vary with the thickness of the SiOXNY thin-film. Further, the process enables the in-situ deposition of a SiOXNY thin-film multilayer structure, where the different layers may be stoichiometric, non-stoichiometric, graded, and combinations of the above-mentioned types of SiOXNY thin-films.
    • 提供了用于形成SiOXNY薄膜的高密度等离子体方法。 该方法提供衬底并引入硅(Si)前体。 使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺将薄膜沉积在衬底上。 结果,形成SiOXNY薄膜,其中(X + Y <2和Y> 0)。 SiOXNY薄膜可以是化学计量的或非化学计量的。 SiOXNY薄膜可以分级,这意味着X和Y的值随SiOXNY薄膜的厚度而变化。 此外,该方法能够实现SiOXNY薄膜多层结构的原位沉积,其中不同的层可以是化学计量的,非化学计量的,分级的,以及上述类型的SiOXNY薄膜的组合。
    • 9. 发明授权
    • Oxide interface with improved oxygen bonding
    • 具有改善氧键的氧化物界面
    • US07759736B2
    • 2010-07-20
    • US11524783
    • 2006-09-21
    • Pooran Chandra Joshi
    • Pooran Chandra Joshi
    • H01L27/01
    • H01L29/78603H01L29/4908H01L29/66757H01L29/78609
    • A deposition oxide interface with improved oxygen bonding and a method for bonding oxygen in an oxide layer are provided. The method includes depositing an M oxide layer where M is a first element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5, plasma oxidizing the M oxide layer at a temperature of less than 400° C. using a high density plasma source, and in response to plasma oxidizing the M oxide layer, improving M-oxygen bonding in the M oxide layer. The plasma oxidation process diffuses excited oxygen radicals into the oxide layer. The plasma oxidation is performed at specified parameters including temperature, power density, pressure, process gas composition, and process gas flow. In some aspects of the method, M is silicon, and the oxide interface is incorporated into a thin film transistor.
    • 提供具有改善的氧键的沉积氧化物界面和氧化层中的氧键合方法。 该方法包括沉积M氧化物层,其中M是选自化学上定义为固体且具有+2至+5范围内的氧化态的元素的第一元素,在氧化层中氧化氧化层的温度为 小于400℃,使用高密度等离子体源,并且响应于等离子体氧化M氧化物层,改善M氧化物层中的M-氧键。 等离子体氧化过程将激发的氧自由基扩散到氧化物层中。 等离子体氧化在包括温度,功率密度,压力,工艺气体成分和工艺气体流量在内的特定参数下进行。 在该方法的一些方面,M是硅,并且氧化物界面被结合到薄膜晶体管中。
    • 10. 发明授权
    • Graded junction silicon nanocrystal embedded silicon oxide electroluminescence device
    • 分级结硅纳米晶体嵌入式氧化硅电致发光器件
    • US07723913B2
    • 2010-05-25
    • US12168771
    • 2008-07-07
    • Vincenzo CasasantaApostolos T. VoutsasPooran Chandra Joshi
    • Vincenzo CasasantaApostolos T. VoutsasPooran Chandra Joshi
    • H01L21/00H01L21/20H01J1/62H01J9/24
    • C23C16/30C23C16/24C23C16/401C23C16/505C23C16/56H01L21/02532H01L21/02595
    • A silicon (Si) nanocrystal embedded Si oxide electroluminescence (EL) device and associated fabrication process are presented. The method provides a substrate bottom electrode, and forms a plurality of Si nanocrystal embedded SiOx film layers overlying the bottom electrode, where X is less than 2. Each SiOx film layer has a Si excess concentration in a range of about 5 to 30%. The outside film layers sandwich an inner film layer having a lower concentration of Si nanocrystals. Alternately stated, the outside Si nanocrystal embedded SiOx film layers have a higher electrical conductivity than a sandwiched inner film layer. A transparent top electrode is formed over the plurality of Si nanocrystal embedded SiOx film layers. The plurality of Si nanocrystal embedded SiOx film layers are deposited using a high density plasma-enhanced chemical vapor deposition (HD PECVD) process. The HD PECVD process initially deposits SiOx film layers, which are subsequently annealed.
    • 介绍了一种硅(Si)纳米晶体内置Si氧化物电致发光(EL)器件及其制造工艺。 该方法提供衬底底部电极,并且形成多个覆盖底部电极的Si纳米晶体的嵌入的SiO x膜层,其中X小于2.每个SiO x膜层的Si过量浓度在约5-30%的范围内。 外层膜层叠具有较低浓度的Si纳米晶体的内膜层。 或者说,外部Si纳米晶体埋入的SiOx膜层具有比夹层内膜层更高的导电性。 在多个Si纳米晶体嵌入的SiOx膜层上形成透明顶部电极。 使用高密度等离子体增强化学气相沉积(HD PECVD)工艺沉积多个Si纳米晶体嵌入的SiOx膜层。 HD PECVD工艺首先沉积SiO x膜层,随后退火。