会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Thin film oxide interface
    • 薄膜氧化物界面
    • US07196383B2
    • 2007-03-27
    • US11046571
    • 2005-01-28
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • H01L29/772
    • H01L29/66757H01L29/4908H01L29/66772
    • An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.
    • 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。
    • 3. 发明授权
    • Plasma method for fabricating oxide thin films
    • 用于制造氧化物薄膜的等离子体方法
    • US06689646B1
    • 2004-02-10
    • US10295579
    • 2002-11-14
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • Pooran Chandra JoshiJohn W. HartzellMasahiro AdachiYoshi Ono
    • H01L2100
    • H01L29/66757H01L29/78603H01L29/78609
    • A method is provided for fabricating a thin film oxide. The method include forming a first silicon layer, applying a second silicon layer overlying the first silicon layer, oxidizing the second silicon layer at a temperature of less than 400° C. using an inductively coupled plasma source, and forming a thin film oxide layer overlying the first silicon layer. In some cases, the thin film oxide layer overlies the oxidized second silicon layer and is formed by a high-density plasma enhanced chemical vapor deposition process and an inductively coupled plasma source at a temperature of less than 400° C. In some cases, the thin film oxide layer and the first silicon layer are incorporated into a thin film transistor and the thin film oxide layer has a fixed oxide charge density of 3×1011 per square centimeter.
    • 提供了制造薄膜氧化物的方法。 该方法包括形成第一硅层,施加覆盖第一硅层的第二硅层,使用电感耦合等离子体源在小于400℃的温度下氧化第二硅层,以及形成覆盖层的薄膜氧化物层 第一硅层。 在一些情况下,薄膜氧化物层覆盖氧化的第二硅层,并且通过高密度等离子体增强化学气相沉积工艺和电感耦合等离子体源在低于400℃的温度下形成。在一些情况下, 薄膜氧化物层和第一硅层结合到薄膜晶体管中,并且薄膜氧化物层具有固定的氧化物电荷密度为3×10 11每平方厘米。
    • 6. 发明申请
    • Thin film oxide interface
    • 薄膜氧化物界面
    • US20050136695A1
    • 2005-06-23
    • US11046571
    • 2005-01-28
    • Pooran JoshiJohn HartzellMasahiro AdachiYoshi Ono
    • Pooran JoshiJohn HartzellMasahiro AdachiYoshi Ono
    • H01L21/316H01L21/336H01L29/49H01L29/786H01L23/58H01L21/26H01L21/324H01L21/42H01L21/477
    • H01L29/66757H01L29/4908H01L29/66772
    • An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.
    • 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。
    • 8. 发明申请
    • CHEMICAL SENSOR
    • 化学传感器
    • US20110291673A1
    • 2011-12-01
    • US13147798
    • 2010-02-08
    • Yoshinori ShibataMasahiro Adachi
    • Yoshinori ShibataMasahiro Adachi
    • G01R27/28H01L29/66
    • G01N27/4145G01N27/4148
    • Provided is a chemical sensor requiring no ion-sensitive film. Specifically provided is a chemical sensor (1) for detecting a sample base material (19) to be detected in a sample, the chemical sensor (1) including: a sensor TFT (7) of sensor TFTs (7) each of which has a glass substrate (8) and, on the glass substrate (8), a gate electrode (10), a gate oxide film (11), a silicon layer (12), a source electrode (14), and a drain electrode (15), the silicon layer (12) having a channel region (18) at an opening portion between the source electrode (14) and the drain electrode (15); and extracting signal lines PAS1 to PASn and a sensor signal amplifying and extracting circuit (24) that extract a leak current that is generated in the channel region (18).
    • 提供了不需要离子敏感膜的化学传感器。 具体地提供一种用于检测样品中要检测的样品基材(19)的化学传感器(1),所述化学传感器(1)包括:传感器TFT(7)的传感器TFT(7),每个传感器TFT具有 玻璃基板(8),并且在玻璃基板(8)上具有栅电极(10),栅极氧化膜(11),硅层(12),源电极(14)和漏电极(15) ),所述硅层(12)在所述源电极(14)和所述漏电极(15)之间的开口部分具有沟道区(18); 以及提取信号线PAS1〜PASn和提取在通道区域(18)中产生的泄漏电流的传感器信号放大和提取电路(24)。
    • 9. 发明申请
    • DISPLAY DEVICE HAVING OPTICAL SENSOR
    • 具有光学传感器的显示设备
    • US20110221707A1
    • 2011-09-15
    • US13129103
    • 2009-06-25
    • Kei OyobeMasahiro Adachi
    • Kei OyobeMasahiro Adachi
    • G06F3/042
    • G06F3/0412G02F1/13338G06F3/042G09G3/3648G09G2354/00G09G2360/147
    • A plurality of pixel circuits are provided on a TFT-side substrate 11, light blocking layers 15 and light blocking layer openings 16 are provided between the pixel circuits, and optical sensors 17 are arranged at positions where the light blocking layers 15 are provided. Light blocking layers 18 are also provided at opposing portions of the opposite substrate 12, and light reflecting units 19 are provided correspondingly to the optical sensors 17. In the normal state, backlight BL that has passed through the TFT-side substrate 11 is reflected by the light reflecting unit 19 and falls on the optical sensor 17. When the front surface of the liquid crystal panel is pressed, the two substrates come close to each other, the light reflection direction in the light reflecting unit 19 changes, and the intensity of light detected by the optical sensor 17 changes. By subjecting the obtained sensor image to an image recognition process, it is possible to eliminate the effect of the external light and detect the touch position on the display screen with high accuracy.
    • 在TFT侧基板11上设置多个像素电路,在像素电路之间设置有遮光层15和遮光层开口16,并且在设置有遮光层15的位置配置有光学传感器17。 遮光层18也设置在相对基板12的相对部分处,并且光反射单元19对应于光学传感器17设置。在正常状态下,已经通过TFT侧基板11的背光BL被 光反射单元19落在光学传感器17上。当按压液晶面板的前表面时,两个基板彼此靠近,光反射单元19中的光反射方向变化,并且强度 由光学传感器17检测到的光改变。 通过对获得的传感器图像进行图像识别处理,可以消除外部光的影响并且以高精度检测显示屏上的触摸位置。