会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20100301411A1
    • 2010-12-02
    • US12787052
    • 2010-05-25
    • Yasuhiro TAKEDAKazunori FujitaHaruki Yoneda
    • Yasuhiro TAKEDAKazunori FujitaHaruki Yoneda
    • H01L29/78
    • H01L29/7816H01L29/0696H01L29/0878H01L29/1095H01L29/42368H01L29/66681H01L29/7823
    • The invention prevents a source-drain breakdown voltage of a DMOS transistor from decreasing due to dielectric breakdown in a portion of a N type drift layer having high concentration formed in an active region near field oxide film corner portions surrounding an gate width end portion. The field oxide film corner portions are disposed on the outside of the gate width end portion so as to be further away from a P type body layer formed in the gate width end portion by forming the active region wider on the outside of the gate width end portion than in a gate width center portion. By this, the N type drift layer having high concentration near the field oxide film corner portions are disposed further away from the P type body layer without increasing the device area.
    • 本发明防止DMOS晶体管的源极 - 漏极击穿电压由于在围绕栅极宽度端部的场氧化物膜角部附近的有源区域中形成的具有高浓度的N型漂移层的部分中的电介质击穿而减小。 通过在栅极宽度端部的外侧形成更宽的有源区域,将场氧化膜角部设置在栅极宽度端部的外侧,以便进一步远离形成在栅极宽度端部的P型主体层 部分比在门宽中心部分。 由此,在场氧化膜角部附近具有高浓度的N型漂移层配置为远离P型体层而不增加器件面积。
    • 2. 发明申请
    • TRANSISTOR, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
    • 晶体管,半导体器件及其制造方法
    • US20090278200A1
    • 2009-11-12
    • US12434128
    • 2009-05-01
    • Yasuhiro TAKEDASeiji OTAKEKazunori FUJITA
    • Yasuhiro TAKEDASeiji OTAKEKazunori FUJITA
    • H01L29/78H01L21/20H01L21/22
    • H01L21/823456H01L21/2815H01L21/823412H01L21/823487H01L29/0653H01L29/0878H01L29/41766H01L29/4236H01L29/42376H01L29/66734H01L29/7809H01L29/7813
    • An ON resistance of a trench gate type transistor and a withstand voltage of a planar type transistor are optimized at the same time. Each of first and second regions of a semiconductor layer is formed by epitaxial growth on each of first and second regions of a semiconductor substrate, respectively. A first buried layer is formed between the first region of the semiconductor substrate and the first region of the semiconductor layer, while a second buried layer is formed between the second region of the semiconductor substrate and the second region of the semiconductor layer. The first buried layer is formed of an N+ type first impurity-doped layer and an N type second impurity-doped layer that extends beyond the fist impurity-doped layer. The second buried layer is formed of an N+ type impurity-doped layer only. In the first region of the semiconductor layer, an impurity is diffused from a surface of the semiconductor layer deep into the semiconductor layer to form an N type third impurity-doped layer. The trench gate type transistor is formed in the first region of the semiconductor layer and the planar type transistor is formed in the second region of the semiconductor layer.
    • 同时优化沟槽栅型晶体管的导通电阻和平面型晶体管的耐电压。 半导体层的第一和第二区域中的每一个分别通过在半导体衬底的第一和第二区域中的每一个上外延生长而形成。 在半导体衬底的第一区域和半导体层的第一区域之间形成第一掩埋层,而在半导体衬底的第二区域和半导体层的第二区域之间形成第二掩埋层。 第一掩埋层由N +型第一杂质掺杂层和延伸超过第一杂质掺杂层的N型第二杂质掺杂层形成。 第二掩埋层仅由N +型杂质掺杂层形成。 在半导体层的第一区域中,杂质从半导体层的表面扩散到半导体层中以形成N型第三杂质掺杂层。 沟槽栅型晶体管形成在半导体层的第一区域中,并且平面型晶体管形成在半导体层的第二区域中。
    • 4. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20130075865A1
    • 2013-03-28
    • US13612224
    • 2012-09-12
    • Seiji OTAKEYasuhiro TAKEDAYuta MIYAMOTO
    • Seiji OTAKEYasuhiro TAKEDAYuta MIYAMOTO
    • H01L27/06
    • H01L27/0259
    • An ESD protection element is formed by a PN junction diode including an N+ type buried layer having a proper impurity concentration and a first P+ type buried layer and a parasitic PNP bipolar transistor which uses a second P+ type buried layer connected to a P+ type diffusion layer as the emitter, an N− type epitaxial layer as the base, and the first P+ type buried layer as the collector. The first P+ type buried layer is connected to an anode electrode, and the P+ type diffusion layer and an N+ type diffusion layer surrounding the P+ type diffusion layer are connected to a cathode electrode. When a large positive static electricity is applied to the cathode electrode, and the parasitic PNP bipolar transistor turns on to flow a large discharge current.
    • ESD保护元件由包括具有适当杂质浓度的N +型掩埋层和第一P +型掩埋层的PN结二极管和使用连接到P +型扩散层的第二P +型掩埋层的寄生PNP双极晶体管形成 作为发射极,以N型外延层为基底,第一P +型埋层作为集电体。 第一P +型埋层与阳极连接,P +型扩散层和围绕P +型扩散层的N +型扩散层与阴极电极连接。 当向阴极施加大的正静电时,并且寄生PNP双极晶体管导通以流过大的放电电流。
    • 7. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20130075864A1
    • 2013-03-28
    • US13612194
    • 2012-09-12
    • Seiji OTAKEYasuhiro TAKEDAYuta MIYAMOTO
    • Seiji OTAKEYasuhiro TAKEDAYuta MIYAMOTO
    • H01L27/06
    • H01L27/0259
    • An ESD protection element is formed by a PN junction diode including an N+ type buried layer having a proper impurity concentration and a P+ type buried layer and a parasitic PNP bipolar transistor which uses a P+ type drawing layer connected to a P+ type diffusion layer as the emitter, an N− type epitaxial layer as the base, and a P type semiconductor substrate as the collector. The P+ type buried layer is connected to an anode electrode, and the P+ type diffusion layer and an N+ type diffusion layer connected to and surrounding the P+ type diffusion layer are connected to a cathode electrode. When a large positive static electricity is applied to the cathode electrode, the parasitic PNP bipolar transistor turns on to flow a large discharge current.
    • ESD保护元件由包括具有适当杂质浓度的N +型掩埋层和P +型掩埋层的PN结二极管和使用连接到P +型扩散层的P +型绘图层的寄生PNP双极晶体管形成,作为 作为基极的N型外延层和作为集电体的P型半导体基板。 P +型埋层与阳极连接,P +型扩散层与P +型扩散层连接并围绕P +型扩散层的N +型扩散层与阴极电极连接。 当向阴极施加大的正静电时,寄生PNP双极晶体管导通以流过大的放电电流。
    • 8. 发明申请
    • BIDIRECTIONAL SWITCH
    • 双向开关
    • US20120025305A1
    • 2012-02-02
    • US13188059
    • 2011-07-21
    • Yasuhiro TAKEDA
    • Yasuhiro TAKEDA
    • H01L29/78
    • H01L29/7825H01L21/2815H01L29/42376
    • An ON resistance of a bidirectional switch with a trench gate structure composed of two MOS transistors sharing a common drain is reduced. A plurality of trenches is formed in an N type well layer. Then a P type body layer is formed in every other column of the N type well layer interposed between a pair of the trenches. A first N+ type source layer and a second N+ type source layer are formed alternately in each of a plurality of the P type body layers. A first gate electrode is formed in each of a pair of the trenches interposing the first N+ type source layer, and a second gate electrode is formed in each of a pair of the trenches interposing the second N+ type source layer. A portion of the N type well layer interposed between a sidewall on an opposite side of the body layer of the trench in which the first gate electrode is formed and a sidewall on an opposite side of the body layer of the trench in which the second gate electrode is formed makes an N type drain layer serving as an electric field relaxation layer. A cross-sectional area of the N type drain layer makes a path of the ON current.
    • 具有由共用共同漏极的两个MOS晶体管组成的沟槽栅极结构的双向开关的导通电阻减小。 在N型阱层中形成多个沟槽。 然后,在插入在一对沟槽之间的N型阱层的每隔一列中形成P型体层。 第一N +型源极层和第二N +型源极层在多个P型体层中的每一个中交替地形成。 在插入第一N +型源极层的一对沟槽中的每一个中形成第一栅电极,并且在插入第二N +型源极层的一对沟槽中的每一个中形成第二栅电极。 N型阱层的一部分插入在形成有第一栅极的沟槽的主体层的相对侧上的侧壁与沟槽的主体层的相对侧上的侧壁之间,第二栅极 电极形成为用作电场弛豫层的N型漏极层。 N型漏极层的横截面积形成导通电流的路径。