会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Time-of-flight SIMS/MSRI reflectron mass analyzer and method
    • 飞行时间SIMS / MSRI反射体质量分析仪和方法
    • US06008491A
    • 1999-12-28
    • US953792
    • 1997-10-15
    • Vincent S. SmentkowskiDieter M. GruenAlan R. KraussJ. Albert SchultzJohn C. Holecek
    • Vincent S. SmentkowskiDieter M. GruenAlan R. KraussJ. Albert SchultzJohn C. Holecek
    • G01Q60/00H01J49/40H01J37/08B01D59/44H01J49/00
    • H01J49/405H01J2237/2527
    • A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.
    • 提供了通过二次离子质谱(SIMS)和回收离子质谱(MSRI)分析样品的表面特性的方法和装置。 该方法包括通过离子束表面分析技术检测背散射的一次离子,低能量喷射物质和高能量喷射物质,包括以预定角度θ定位ToF SIMS / MSRI质量分析器,其中θ是水平轴 质量分析器和未偏转的一次离子束线,并向分析器的背环施加特定电压。 θ优选小于或等于约120°,更优选等于74°。 对于正离子分析,反射器的提取器,透镜和前环设置为负高电压(-HV)。 对于MSRI测量,反射镜的背环设置为大于约+ 700V,对于SIMS测量,反射镜的背环设置在大约+ 70V和约+ 50V的范围之间。 该方法还包括反转施加到提取器,透镜,前环和后环的电位的极性,以获得负离子SIMS和/或MSRI数据。
    • 6. 发明授权
    • Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
    • 超晶体金刚石悬臂宽动态范围加速/振动/压力传感器
    • US06422077B1
    • 2002-07-23
    • US09543992
    • 2000-04-06
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • G01P1508
    • G01H9/00B82Y35/00G01D5/30G01H11/06G01L1/005G01L1/044G01P15/0888G01P15/0894G01P15/093Y10S977/732Y10S977/932
    • An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
    • 在一个高灵敏度的超小型传感器中,采用悬臂结构形成的超微晶金刚石(UNCD)元件用于在宽动态范围内测量加速度,冲击,振动和静压力。 悬臂UNCD元件可以与单个阳极组合使用,测量光学或电容测量。 在另一个实施例中,悬臂UNCD元件设置在两个阳极之间,其中DC电压施加到两个阳极。 通过施加到UNCD悬臂元件的小的AC调制电压,并且由于Fowler-Nordheim方程中施加的电压和阳极 - 阴极间隙距离的对称性,维持指定的阳极电压比V1 / N2的任何变化 电流比精确匹配UNCD悬臂元件的任何位移与平衡。 通过测量维持指定电流比所需的阳极电压比的变化,可以精确地确定UNCD悬臂的偏转。 通过适当地调制在UNCD悬臂与两个阳极之间施加的电压或极限电极,可以精确地独立测量压力,单轴加速度,振动和冲击。 本发明还考虑了用于制造用于传感器的悬臂UNCD结构的方法。
    • 8. 发明授权
    • Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
    • 超晶体金刚石悬臂宽动态范围加速/振动/压力传感器
    • US06613601B1
    • 2003-09-02
    • US10142814
    • 2002-05-09
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • H01L2100
    • G01H9/00B82Y35/00G01D5/30G01H11/06G01L1/005G01L1/044G01P15/0888G01P15/0894G01P15/093Y10S977/732Y10S977/932
    • An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
    • 在一个高灵敏度的超小型传感器中,采用悬臂结构形成的超微晶金刚石(UNCD)元件用于在宽动态范围内测量加速度,冲击,振动和静压力。 悬臂UNCD元件可以与单个阳极组合使用,测量光学或电容测量。 在另一个实施例中,悬臂UNCD元件设置在两个阳极之间,其中DC电压施加到两个阳极。 通过施加到UNCD悬臂元件上的小的AC调制电压,并且由于Fowler-Nordheim方程中所施加的电压和阳极 - 阴极间隙距离的对称性,维持指定的所需的阳极电压比V1 / V2的任何变化 电流比精确匹配UNCD悬臂元件的任何位移与平衡。 通过测量维持指定电流比所需的阳极电压比的变化,可以精确地确定UNCD悬臂的偏转。 通过适当地调制在UNCD悬臂与两个阳极之间施加的电压或极限电极,可以精确地独立测量压力,单轴加速度,振动和冲击。 本发明还考虑了用于制造用于传感器的悬臂UNCD结构的方法。