会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Top-down nanowire thinning processes
    • 自上而下的纳米线稀疏过程
    • US08546269B2
    • 2013-10-01
    • US12417936
    • 2009-04-03
    • Tymon BarwiczGuy CohenLidija SekaricJeffrey Sleight
    • Tymon BarwiczGuy CohenLidija SekaricJeffrey Sleight
    • H01L21/302H01L21/461H01L29/06
    • H01L21/02238B82Y10/00B82Y30/00H01L21/02255H01L21/30604H01L29/0665H01L29/0676H01L29/42392H01L29/775H01L29/78696
    • Techniques for fabricating nanowire-based devices are provided. In one aspect, a method for fabricating a semiconductor device is provided comprising the following steps. A wafer is provided having a silicon-on-insulator (SOI) layer over a buried oxide (BOX) layer. Nanowires and pads are etched into the SOI layer to form a ladder-like structure wherein the pads are attached at opposite ends of the nanowires. The BOX layer is undercut beneath the nanowires. The nanowires and pads are contacted with an oxidizing gas to oxidize the silicon in the nanowires and pads under conditions that produce a ratio of a silicon consumption rate by oxidation on the nanowires to a silicon consumption rate by oxidation on the pads of from about 0.75 to about 1.25. An aspect ratio of width to thickness among all of the nanowires may be unified prior to contacting the nanowires and pads with the oxidizing gas.
    • 提供了制造基于纳米线的器件的技术。 一方面,提供一种制造半导体器件的方法,包括以下步骤。 提供了在掩埋氧化物(BOX)层上方具有绝缘体上硅(SOI)层的晶片。 将纳米线和焊盘蚀刻到SOI层中以形成阶梯状结构,其中焊盘附着在纳米线的相对端。 BOX层在纳米线下面被切下。 纳米线和焊盘与氧化气体接触,以在通过氧化在纳米线上产生硅消耗速率与硅消耗速率之比的条件下,在纳米线和焊盘中氧化硅,焊盘上的氧化从约0.75降至 约1.25。 在使纳米线和焊盘与氧化气体接触之前,可以统一所有纳米线中的宽度与厚度的纵横比。
    • 2. 发明申请
    • Top-Down Nanowire Thinning Processes
    • 自上而下的纳米线变薄过程
    • US20100255680A1
    • 2010-10-07
    • US12417936
    • 2009-04-03
    • Tymon BarwiczGuy CohenLidija SekaricJeffrey Sleight
    • Tymon BarwiczGuy CohenLidija SekaricJeffrey Sleight
    • H01L21/306
    • H01L21/02238B82Y10/00B82Y30/00H01L21/02255H01L21/30604H01L29/0665H01L29/0676H01L29/42392H01L29/775H01L29/78696
    • Techniques for fabricating nanowire-based devices are provided. In one aspect, a method for fabricating a semiconductor device is provided comprising the following steps. A wafer is provided having a silicon-on-insulator (SOI) layer over a buried oxide (BOX) layer. Nanowires and pads are etched into the SOI layer to form a ladder-like structure wherein the pads are attached at opposite ends of the nanowires. The BOX layer is undercut beneath the nanowires. The nanowires and pads are contacted with an oxidizing gas to oxidize the silicon in the nanowires and pads under conditions that produce a ratio of a silicon consumption rate by oxidation on the nanowires to a silicon consumption rate by oxidation on the pads of from about 0.75 to about 1.25. An aspect ratio of width to thickness among all of the nanowires may be unified prior to contacting the nanowires and pads with the oxidizing gas.
    • 提供了制造基于纳米线的器件的技术。 一方面,提供一种制造半导体器件的方法,包括以下步骤。 提供了在掩埋氧化物(BOX)层上方具有绝缘体上硅(SOI)层的晶片。 将纳米线和焊盘蚀刻到SOI层中以形成阶梯状结构,其中焊盘附着在纳米线的相对端。 BOX层在纳米线下面被切下。 纳米线和焊盘与氧化气体接触,以在通过氧化在纳米线上产生硅消耗速率与硅消耗速率之比的条件下,在纳米线和焊盘中氧化硅,焊盘上的氧化从约0.75降至 约1.25。 在使纳米线和焊盘与氧化气体接触之前,可以统一所有纳米线中的宽度与厚度的纵横比。
    • 4. 发明申请
    • SEMICONDUCTOR NANOWIRES HAVING MOBILITY-OPTIMIZED ORIENTATIONS
    • 具有移动优化方位的半导体纳米级
    • US20110175063A1
    • 2011-07-21
    • US13075551
    • 2011-03-30
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L29/775
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分变薄。
    • 5. 发明授权
    • Semiconductor nanowires having mobility-optimized orientations
    • 具有移动性优化取向的半导体纳米线
    • US07943530B2
    • 2011-05-17
    • US12417796
    • 2009-04-03
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L21/31H01L21/469
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分的稀化。
    • 6. 发明授权
    • Robust top-down silicon nanowire structure using a conformal nitride
    • 使用保形氮化物的坚固的自顶向下的硅纳米线结构
    • US08080456B2
    • 2011-12-20
    • US12469304
    • 2009-05-20
    • Tymon BarwiczLidija SekaricJeffrey W. Sleight
    • Tymon BarwiczLidija SekaricJeffrey W. Sleight
    • H01L21/336
    • H01L29/0665B82Y10/00H01L29/0673H01L29/42392H01L29/78696
    • In one exemplary embodiment, a method for fabricating a nanowire product comprising: providing a wafer having a buried oxide (BOX) upper layer in which a well is formed, the wafer further having a nanowire having ends resting on the BOX layer such that the nanowire forms a beam spanning said well; and forming a mask coating on an upper surface of the BOX layer leaving an uncoated window over a center part of said beam over said well and also forming a mask coating around beam intermediate ends between each end of a beam center part and a side wall of said well. In another exemplary embodiment, a nanowire product comprising: a wafer having a buried oxide (BOX) upper layer in which a well having side walls is formed; a nanowire having ends resting on the BOX layer so as to form a beam spanning said well and said side walls; and a hard mask coating on an upper surface of said BOX layer and around intermediate ends of said beam between each side wall of said well and ends of a center part of said beam leaving an uncoated window over a beam center part through which oxidation of said beam center part can take place.
    • 在一个示例性实施例中,一种用于制造纳米线产品的方法,包括:提供具有其中形成阱的掩埋氧化物(BOX)上层的晶片,所述晶片还具有具有搁置在BOX层上的端部的纳米线,使得纳米线 形成横跨所述井的梁; 并且在BOX层的上表面上形成掩模涂层,在所述孔的中心部分上留下未涂覆的窗口,并且还在梁的中心部分的两端和侧壁之间的梁中间端部 说得好 在另一个示例性实施例中,纳米线产品包括:具有掩埋氧化物(BOX)上层的晶片,其中形成具有侧壁的阱; 具有搁置在BOX层上的端部以形成横跨所述井和所述侧壁的梁的纳米线; 以及在所述BOX层的上表面上并且在所述孔的每个侧壁和所述梁的中心部分的端部之间的所述梁的中间端周围的硬掩模涂层,在光束中心部分上留下未涂覆的窗口,通过所述光束中心部分氧化所述 梁中心部分可以发生。
    • 7. 发明授权
    • Semiconductor nanowires having mobility-optimized orientations
    • 具有移动性优化取向的半导体纳米线
    • US08299565B2
    • 2012-10-30
    • US13075551
    • 2011-03-30
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L29/00
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分变薄。
    • 8. 发明申请
    • SEMICONDUCTOR NANOWIRES HAVING MOBILITY-OPTIMIZED ORIENTATIONS
    • 具有移动优化方位的半导体纳米级
    • US20100252814A1
    • 2010-10-07
    • US12417796
    • 2009-04-03
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • Lidija SekaricTymon BarwiczDureseti Chidambarrao
    • H01L29/12H01L21/782
    • H01L29/0665B82Y10/00B82Y30/00H01L29/0673H01L29/125H01L29/42392H01L29/78696
    • Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning. By compensating for different thinning rates for different crystallographic surfaces, semiconductor nanowires having optimal sublithographic widths may be formed for different crystallographic orientations without excessive thinning or insufficient thinning.
    • 通过在电介质材料层上的半导体层进行平版印刷图案,形成各自包括半导体连接部分和两个邻接焊盘部分的原型半导体结构。 半导体连接部分的侧壁被定向为使第一类型半导体结构的空穴迁移率最大化,并使第二类型半导体结构的电子迁移率最大化。 通过半导体结构的氧化来减薄半导体连接部分的宽度,以不同的速率降低不同的晶体取向。 半导体连接部分的宽度是预定的,使得在半导体连接部分的侧壁上的不同量的薄化导致在变薄后得到的半导体纳米线的目标亚光刻尺寸。 通过补偿不同晶面的不同稀释速率,可以为不同的晶体取向形成具有最佳亚光刻宽度的半导体纳米线,而不会过度稀化或不充分变薄。