会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Lateral collection photovoltaics
    • 横向收集光伏
    • US08294025B2
    • 2012-10-23
    • US11972491
    • 2008-01-10
    • Stephen J. FonashHandong LiDavid Stone
    • Stephen J. FonashHandong LiDavid Stone
    • H01L31/02224
    • H01L31/035281B82Y20/00H01L31/022425H01L31/022433H01L31/03529H01L31/18H01L51/445H01L51/447Y02E10/549Y10T428/24174
    • Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    • 使用基于微纳米收集元件的侧向收集光伏(LCP)结构来收集光生载流子。 在一组实施例中,集合元件排列在导电衬底上。 在某些形式中,收集元件基本上垂直于导体。 在另一组实施例中,微尺度或纳米级收集元件不具有与任何导电衬底的直接物理和电接触。 在一个版本中,阳极和阴极电极都是横向排列的。 在另一个版本中,一个电极的收集元件是复合材料,其中导体由驻留在基底上的相对电极的绝缘体分隔开,绝缘体是每个集电器元件的一部分。 在另一个版本中,一个电极结构的集合是包含阳极和阴极收集元件用于收集的复合物。 活性物质位于收集器元件之间。
    • 3. 发明申请
    • LATERAL COLLECTION PHOTOVOLTAICS
    • 横向收藏光伏
    • US20080176030A1
    • 2008-07-24
    • US11972491
    • 2008-01-10
    • Stephen J. FonashHandong LiDavid Stone
    • Stephen J. FonashHandong LiDavid Stone
    • B32B7/00
    • H01L31/035281B82Y20/00H01L31/022425H01L31/022433H01L31/03529H01L31/18H01L51/445H01L51/447Y02E10/549Y10T428/24174
    • Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    • 使用基于微纳米收集元件的侧向收集光伏(LCP)结构来收集光生载流子。 在一组实施例中,集合元件排列在导电衬底上。 在某些形式中,收集元件基本上垂直于导体。 在另一组实施例中,微尺度或纳米级收集元件不具有与任何导电衬底的直接物理和电接触。 在一个版本中,阳极和阴极电极都是横向排列的。 在另一个版本中,一个电极的收集元件是复合材料,其中导体由驻留在基底上的相对电极的绝缘体分隔开,绝缘体是每个集电器元件的一部分。 在另一个版本中,一个电极结构的集合是包含阳极和阴极收集元件用于收集的复合物。 活性物质位于收集器元件之间。
    • 5. 发明申请
    • LATERAL COLLECTION PHOTOVOLTAICS
    • 横向收藏光伏
    • US20130099342A1
    • 2013-04-25
    • US13657035
    • 2012-10-22
    • Stephen J. FonashLi HandongDavid Stone
    • Stephen J. FonashLi HandongDavid Stone
    • H01L31/0352H01L31/18
    • H01L31/035281B82Y20/00H01L31/022425H01L31/022433H01L31/03529H01L31/18H01L51/445H01L51/447Y02E10/549Y10T428/24174
    • A nanostructured or microstructured array of elements on a conductor layer together form a device electrode of a photovoltaic or detector structure. The array on the conductor layer has a high surface area to volume ratio configuration defining a void matrix between elements. An active layer or active layer precursors is disposed into the void matrix as a liquid to form a thickness coverage giving an interface on which a counter-electrode is positioned parallel to the conduction layer or as a vapor to form a conformal thickness coverage of the array and conduction layer. The thickness coverage is controlled to enhance collection of at least one of electrons and holes arising from photogeneration, or excitons arising from photogeneration, to the device electrode or a device counter-electrode as well as light absorption in said active layer via reflection and light trapping of said device electrode.
    • 导体层上的纳米结构或微结构化元件阵列一起形成光伏或检测器结构的器件电极。 导体层上的阵列具有限定元件之间的空隙矩阵的高表面积与体积比构型。 将活性层或活性层前体作为液体设置到空隙基质中以形成厚度覆盖层,从而形成平面于导电层或蒸气的反电极的界面,以形成阵列的共形厚度覆盖 和导电层。 控制厚度覆盖以增强从光生产引起的电子和空穴或由光生成产生的激子中的至少一个的收集到器件电极或器件对电极以及通过反射和光捕获在所述有源层中的光吸收 的所述器件电极。
    • 9. 发明授权
    • Low temperature, high quality silicon dioxide thin films deposited using
tetramethylsilane (TMS)
    • 使用四甲基硅烷(TMS)沉积的低温,高品质二氧化硅薄膜
    • US6159559A
    • 2000-12-12
    • US110923
    • 1998-07-06
    • Douglas M. ReberStephen J. Fonash
    • Douglas M. ReberStephen J. Fonash
    • C23C16/40C23C16/509H01L21/316
    • H01L21/02126C23C16/402C23C16/5096H01L21/02164H01L21/02211H01L21/02274H01L21/02315H01L21/02337H01L21/31612
    • Silicon dioxide thin films have been deposited at temperatures from 40.degree. C. to 250.degree. C. by plasma enhanced chemical vapor deposition (PECVD) using tetramethylsilane (TMS) as the silicon containing precursor. The properties of the PECVD TMS oxides (PETMS-Oxs) were analyzed with Fourier TransformInfrared (FTIR) transmissionspectroscopy, BOEand P-etch rates and both current-voltage (I-V) and capacitance-voltage (C-V) electrical characterization. It was found that the deposition rate for films produced from TMS increased with decreasing temperature; that the --OH inclusions could be affected by TMS flow rate; and that He dilution rate affected trapping for films produced over the temperature range explored. At both 130.degree. C. and 250.degree. C., deposition conditions were identified which formed high quality as-deposited oxide films. Under the best conditions, unannealed Al/PETMS-Ox/c-Si capacitor structures displayed flat band voltages of V.sub.fb -2.9 V and breakdown fields (V.sub.bd) in excess of 8 MV/cm. These PETMS-Ox films also show low leakage current densities
    • 通过使用四甲基硅烷(TMS)作为含硅前体的等离子体增强化学气相沉积(PECVD),在40℃至250℃的温度下沉积二氧化硅薄膜。 使用傅里叶变换红外(FTIR)透射光谱,BOE和P蚀刻速率以及电流 - 电压(I-V)和电容电压(C-V)电特征来分析PECVD TMS氧化物(PETMS-Oxs)的性质。 发现由TMS产生的薄膜的沉积速率随着温度的降低而增加; -OH夹杂物可能受TMS流速的影响; 并且他的稀释率影响了在所探索的温度范围内产生的膜的捕获。 在130℃和250℃下,确定沉积条件,形成高质量的沉积氧化膜。 在最佳条件下,未退火的Al / PETMS-Ox / c-Si电容器结构显示Vfb -2.9V的平坦带电压和超过8MV / cm的击穿场(Vbd)。 这些PETMS-Ox膜也显示出低于10-9A / cm 2的低泄漏电流密度,其可以保持在超过4.5MV / cm的场。 PETMS氧化物电气质量和工艺简单性相结合,为低温,大面积应用提供了有吸引力的氧化物沉积技术。