会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
    • 通过原子层沉积制作尺寸控制,空间分布的纳米结构的方法
    • US08084087B2
    • 2011-12-27
    • US12070367
    • 2008-02-14
    • Stacey F. BentRong ChenXirong JiangMarja N. MullingsYuji Saito
    • Stacey F. BentRong ChenXirong JiangMarja N. MullingsYuji Saito
    • C23C16/00
    • C23C16/04C23C16/45525
    • A method of growing spatially-separated and size-controlled particles on substrate surfaces is provided. The method utilizes chemical modification of the substrate surface, an atomic layer deposition (ALD) system, providing a modified layer to the substrate surface and providing an ALD material for nanoparticle deposition. The method induces a Volmer-Weber growth method, where islands of the nanoparticles are formed on the surface. The modified layer controls a number of nucleation sites on the surface, where controlling the number of ALD cycles limits an amount of deposited the material for discrete the nanoparticles. The modified layer can include self-assembled monolayers, modified hydrophobicity of the surface, H-terminated surfaces, and varying functional groups within the modified layer, where thermally attached alkenes, photochemically attached alkenes, thermally attached alkynes or photochemically attached alkynes are attached to the H-terminated surfaces, and the density of the nucleation sites of the nanoparticles are thereby managed.
    • 提供了在衬底表面上生长空间分离和尺寸控制的颗粒的方法。 该方法利用了衬底表面的化学改性,原子层沉积(ALD)系统,为衬底表面提供了改性层,并为纳米颗粒沉积提供了一种ALD材料。 该方法诱导Volmer-Weber生长方法,其中在表面上形成纳米颗粒的岛。 改性层控制表面上的多个成核位点,其中控制ALD循环次数限制沉积材料以离散纳米颗粒的量。 改性层可以包括自组装单层,表面改性疏水性,H封端的表面和改性层内的不同官能团,其中热连接的烯烃,光化学连接的烯烃,热连接的炔烃或光化学连接的炔烃连接到 从而管理H封端的表面和纳米颗粒的成核位点的密度。
    • 2. 发明申请
    • Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
    • 通过原子层沉积制作尺寸控制,空间分布的纳米结构的方法
    • US20080274282A1
    • 2008-11-06
    • US12070367
    • 2008-02-14
    • Stacey F. BentRong ChenXirong JiangMarja N. MullingsYuji Saito
    • Stacey F. BentRong ChenXirong JiangMarja N. MullingsYuji Saito
    • C23C16/00
    • C23C16/04C23C16/45525
    • A method of growing spatially-separated and size-controlled particles on substrate surfaces is provided. The method utilizes chemical modification of the substrate surface, an atomic layer deposition (ALD) system, providing a modified layer to the substrate surface and providing an ALD material for nanoparticle deposition. The method induces a Volmer-Weber growth method, where islands of the nanoparticles are formed on the surface. The modified layer controls a number of nucleation sites on the surface, where controlling the number of ALD cycles limits an amount of deposited the material for discrete the nanoparticles. The modified layer can include self-assembled monolayers, modified hydrophobicity of the surface, H-terminated surfaces, and varying functional groups within the modified layer, where thermally attached alkenes, photochemically attached alkenes, thermally attached alkynes or photochemically attached alkynes are attached to the H-terminated surfaces, and the density of the nucleation sites of the nanoparticles are thereby managed.
    • 提供了在衬底表面上生长空间分离和尺寸控制的颗粒的方法。 该方法利用了衬底表面的化学改性,原子层沉积(ALD)系统,为衬底表面提供了改性层,并为纳米颗粒沉积提供了一种ALD材料。 该方法诱导Volmer-Weber生长方法,其中在表面上形成纳米颗粒的岛。 改性层控制表面上的多个成核位点,其中控制ALD循环次数限制沉积材料以离散纳米颗粒的量。 改性层可以包括自组装单层,表面改性疏水性,H封端的表面和改性层内的不同官能团,其中热连接的烯烃,光化学连接的烯烃,热连接的炔烃或光化学连接的炔烃连接到 从而管理H封端的表面和纳米颗粒的成核位点的密度。
    • 5. 发明申请
    • Self-organizing nanostructured solar cells
    • 自组织纳米结构太阳能电池
    • US20090314342A1
    • 2009-12-24
    • US12456208
    • 2009-06-11
    • Stacey F. BentBruce M. Clemens
    • Stacey F. BentBruce M. Clemens
    • H01L31/00
    • H01L31/03529H01L31/073H01L31/1828Y02E10/543
    • A method of forming a self-organized nanostructured solar cell is provided. The method includes depositing a semiconductor film on a substrate, where the semiconductor film includes a mixture of at least two constituents, then activating the semiconductor film during or after the deposition. Here, the activated semiconductor film self-assembles into an organized nanostructure geometry on the substrate, where the organized nanostructure includes a first structure of the at least one constituent having a first polarity and a second structure of the at least one constituent having a second polarity opposite to the first polarity. Further, the invention includes depositing a contact on a top surface of the organized nanostructure geometry.
    • 提供了一种形成自组织的纳米结构太阳能电池的方法。 该方法包括在衬底上沉积半导体膜,其中半导体膜包括至少两种组分的混合物,然后在沉积期间或之后激活半导体膜。 这里,活化的半导体膜在衬底上自组装成有组织的纳米结构几何形状,其中有组织的纳米结构包括具有第一极性的至少一个组分的第一结构和具有第二极性的至少一个组分的第二结构 与第一极性相反。 此外,本发明包括在有组织的纳米结构几何形状的顶表面上沉积接触。
    • 6. 发明授权
    • Self-organizing nanostructured solar cells
    • 自组织纳米结构太阳能电池
    • US08802483B2
    • 2014-08-12
    • US12456208
    • 2009-06-11
    • Stacey F. BentBruce M. Clemens
    • Stacey F. BentBruce M. Clemens
    • H01L21/00H01L31/00
    • H01L31/03529H01L31/073H01L31/1828Y02E10/543
    • A method of forming a self-organized nanostructured solar cell is provided. The method includes depositing a semiconductor film on a substrate, where the semiconductor film includes a mixture of at least two constituents, then activating the semiconductor film during or after the deposition. Here, the activated semiconductor film self-assembles into an organized nanostructure geometry on the substrate, where the organized nanostructure includes a first structure of the at least one constituent having a first polarity and a second structure of the at least one constituent having a second polarity opposite to the first polarity. Further, the invention includes depositing a contact on a top surface of the organized nanostructure geometry.
    • 提供了一种形成自组织的纳米结构太阳能电池的方法。 该方法包括在衬底上沉积半导体膜,其中半导体膜包括至少两种组分的混合物,然后在沉积期间或之后激活半导体膜。 这里,活化的半导体膜在衬底上自组装成有组织的纳米结构几何形状,其中有组织的纳米结构包括具有第一极性的至少一个组分的第一结构和具有第二极性的至少一个组分的第二结构 与第一极性相反。 此外,本发明包括在有组织的纳米结构几何形状的顶表面上沉积接触。