会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • System and method for a sparse kernel expansion for a bayes classifier
    • 用于Bayes分类器的稀疏内核扩展的系统和方法
    • US20050197980A1
    • 2005-09-08
    • US11049187
    • 2005-02-02
    • Murat DundarGlenn FungJinbo BiR. Rao
    • Murat DundarGlenn FungJinbo BiR. Rao
    • G06K9/62G06E1/00
    • G06K9/6256
    • A method and device having instructions for analyzing input data-space by learning classifiers include choosing a candidate subset from a predetermined training data-set that is used to analyze the input data-space. Candidates are temporarily added from the candidate subset to an expansion set to generate a new kernel space for the input data-space by predetermined repeated evaluations of leave-one-out errors for the candidates added to the expansion set. This is followed by removing the candidates temporarily added to the expansion set after the leave-one-out error evaluations are performed, and selecting the candidates to be permanently added to the expansion set based on the leave-one-out errors of the candidates temporarily added to the expansion set to determine the one or more classifiers.
    • 具有用于通过学习分类器分析输入数据空间的指令的方法和设备包括从用于分析输入数据空间的预定训练数据集中选择候选子集。 将候选者从候选子集临时添加到扩展集合,以通过对添加到扩展集合的候选者的一对一错误进行预先重复的评估来为输入数据空间生成新的内核空间。 之后,在执行一次性错误评估之后,删除临时添加到扩展集的候选者,并且基于临时的候选者的一次性错误选择要永久添加到扩展集的候选项 添加到扩展集以确定一个或多个分类器。
    • 9. 发明授权
    • System and method for multiple-instance learning for computer aided diagnosis
    • 用于计算机辅助诊断的多实例学习的系统和方法
    • US08131039B2
    • 2012-03-06
    • US12238536
    • 2008-09-26
    • Balaji KrishnapuramVikas C. RaykarMurat DundarR. Bharat Rao
    • Balaji KrishnapuramVikas C. RaykarMurat DundarR. Bharat Rao
    • G06K9/00
    • G06K9/6278G06K9/6231G06K2209/053
    • A method for training a classifier for classifying candidate regions in computer aided diagnosis of digital medical images includes providing a training set of images, each image including one or more candidate regions that have been identified as suspicious by a computer aided diagnosis system. Each image has been manually annotated to identify malignant regions. Multiple instance learning is applied to train a classifier to classify suspicious regions in a new image as malignant or benign by identifying those candidate regions that overlap a same identified malignant region, grouping each candidate region that overlaps the same identified malignant region into a same bag, and maximizing a probability P = ∏ i = 1 N ⁢ p i y i ⁡ ( 1 - p i ) 1 - y i , wherein N is a number of bags, pi is a probability of bag i containing a candidate region that overlaps with an identified malignant region, and yi is a label where a value of 1 indicates malignancy and 0 otherwise.
    • 一种训练用于对数字医学图像的计算机辅助诊断中的候选区域进行分类的分类器的方法包括提供训练图像组,每个图像包括被计算机辅助诊断系统识别为可疑的一个或多个候选区域。 已经手动注释每个图像以识别恶性区域。 应用多实例学习来训练分类器,通过识别与相同的识别的恶性区域重叠的候选区域,将新图像中的可疑区域分类为恶性或良性,将与相同的所识别的恶性区域重叠的每个候选区域分组成相同的袋子, 并且最大化概率P =Πi = 1 N piyi⁡(1-pi)1-yi,其中N是袋的数量,pi是包含与所识别的恶性区域重叠的候选区域的袋i的概率, yi是1的值,表示恶性的标签,否则为0。
    • 10. 发明授权
    • System and method for multiple instance learning for computer aided detection
    • 用于计算机辅助检测的多实例学习的系统和方法
    • US07986827B2
    • 2011-07-26
    • US11671777
    • 2007-02-06
    • R. Bharat RaoMurat DundarBalaji KrishnapuramGlenn Fung
    • R. Bharat RaoMurat DundarBalaji KrishnapuramGlenn Fung
    • G06K9/62G06K9/00G06E1/00
    • G06K9/6277G06T7/0012G06T2207/30004
    • A method of training a classifier for computer aided detection of digitized medical image, includes providing a plurality of bags, each bag containing a plurality of feature samples of a single region-of-interest in a medical image, where each region-of-interest has been labeled as either malignant or healthy. The training uses candidates that are spatially adjacent to each other, modeled by a “bag”, rather than each candidate by itself. A classifier is trained on the plurality of bags of feature samples, subject to the constraint that at least one point in a convex hull of each bag, corresponding to a feature sample, is correctly classified according to the label of the associated region-of-interest, rather than a large set of discrete constraints where at least one instance in each bag has to be correctly classified.
    • 训练用于数字化医学图像的计算机辅助检测的分类器的方法包括提供多个袋,每个袋包含在医学图像中的单个感兴趣区域的多个特征样本,其中每个感兴趣的区域 已被标记为恶性或健康。 培训使用空间上相邻的候选人,由“包”建模,而不是每个候选人本身。 在多个特征样本袋上训练分类器,受限于根据相关区域的标签对每个袋子的凸包中的至少一个点(对应于特征样本)进行正确分类, 而不是大量离散约束,每个行李中的至少一个实例必须被正确分类。