会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Pattern for monitoring epitaxial layer washout
    • 用于监测外延层冲洗的图案
    • US06770138B2
    • 2004-08-03
    • US10047379
    • 2002-01-14
    • Shih-Feng HuangChih-Feng HuangKuo-Su Huang
    • Shih-Feng HuangChih-Feng HuangKuo-Su Huang
    • C30B3500
    • H01L23/544C30B33/00H01L2924/0002Y10T117/1004H01L2924/00
    • A pattern for monitoring epitaxial layer washout is disclosed. The pattern includes first and second sub-patterns. The first sub-pattern has a shape and defines one or more minimum dimensions. Obfuscation of the first sub-pattern means that epitaxial washout has occurred at least for dimensions equal to or less than the minimum dimensions. The second sub-pattern has the same shape of the first sub-pattern, but defines one or more maximum dimensions. Obfuscation of the second sub-pattern means that epitaxial washout has occurred for dimensions equal to or less than the maximum dimensions. The sub-patterns can include a pair of separated features, such as a pair of interlocking but separated L-shaped features, the separation of which defines the dimensions of the sub-patterns.
    • 公开了一种用于监测外延层冲洗的图案。 该模式包括第一和第二子模式。 第一子图案具有形状并且定义一个或多个最小尺寸。 第一子图案的混淆意味着至少在尺寸等于或小于最小尺寸的情况下发生外延冲洗。 第二子图案具有与第一子图案相同的形状,但是定义一个或多个最大尺寸。 第二子图案的混淆意味着对于等于或小于最大尺寸的尺寸发生外延冲洗。 子图案可以包括一对分离的特征,例如一对互锁但分开的L形特征,其分离限定子图案的尺寸。
    • 2. 发明授权
    • LDMOS device with double N-layering and process for its manufacture
    • LDMOS器件具有双层N层及其制造工艺
    • US06580131B2
    • 2003-06-17
    • US10266712
    • 2002-10-08
    • Chih-Feng HuangKuo-Su Huang
    • Chih-Feng HuangKuo-Su Huang
    • H01L21336
    • H01L29/66681H01L29/0847H01L29/66674H01L29/7816H01L2924/0002H01L2924/00
    • The tradeoff between breakdown voltage and on-resistance for LDMOS devices has been improved by having two epitaxial N−regions instead of the single epitaxial N−region that is used by devices of the prior art. The resistivities and thicknesses of these two N−regions are chosen so that their mean resistivity is similar to that of the aforementioned single N−layer. A key feature is that the lower N−layer (i.e. the one closest to the P−substrate) has a resistivity that is greater than that of the upper N−layer. If these constraints are met, as described in greater detail in the specification, improvements in breakdown voltage of up to 60% can be achieved without having to increase the on-resistance. A process for manufacturing the device is also described.
    • 通过具有两个外延N区而不是由现有技术的器件使用的单个外延N区来改善LDMOS器件的击穿电压和导通电阻之间的折衷。 选择这两个N区的电阻率和厚度,使得它们的平均电阻率类似于上述单个N层的平均电阻率。 一个关键特征是下层N层(即最接近P型衬底的层)的电阻率大于上层N层的电阻率。 如果满足这些约束,如说明书中更详细描述的那样,可以实现高达60%的击穿电压的改善,而不必增加导通电阻。 还描述了用于制造该装置的方法。
    • 4. 发明授权
    • Method of forming self-aligned twin wells
    • 形成自对准双孔的方法
    • US06348371B1
    • 2002-02-19
    • US09809831
    • 2001-03-19
    • Chih-Feng HuangKuo-Su HuangShun-Liang Hsu
    • Chih-Feng HuangKuo-Su HuangShun-Liang Hsu
    • H01L218238
    • H01L21/823892
    • A process for forming self-aligned, twin well regions for a CMOS device, without the use of an oxidation retarding silicon nitride layer, has been developed. A first ion implantation procedure is used to place N type ions in a first portion of a semiconductor substrate, followed by a wet thermal oxidation procedure resulting in the growth of a thick silicon dioxide layer on the N type ions, in the first portion of the semiconductor substrate, while growing a thin silicon dioxide layer on a second portion of the lightly doped, P type semiconductor substrate. A second ion implantation procedure places P type ions through the thin silicon dioxide layer, into the second portion of the semiconductor substrate, while the thick silicon dioxide layer prevents the P type ions from reaching the first portion of the semiconductor substrate. A subsequent anneal procedure results in the formation of a N well region, in the first portion of the semiconductor substrate, self-aligned to the formed P well region, located in the second portion of the semiconductor substrate.
    • 已经开发了用于为CMOS器件形成自对准双阱区而不使用氧化阻滞氮化硅层的工艺。 使用第一离子注入程序将N型离子放置在半导体衬底的第一部分中,随后进行湿热氧化过程,导致在N型离子上生长厚二氧化硅层,在第一部分 半导体衬底,同时在轻掺杂的P型半导体衬底的第二部分上生长薄的二氧化硅层。 第二离子注入程序使P型离子通过薄二氧化硅层进入半导体衬底的第二部分,而厚二氧化硅层防止P型离子到达半导体衬底的第一部分。 随后的退火程序导致在位于半导体衬底的第二部分中的形成的P阱区自对准的半导体衬底的第一部分中的N阱区的形成。
    • 6. 发明授权
    • Method of forming LDMOS device with double N-layering
    • 用双层N层形成LDMOS器件的方法
    • US06486034B1
    • 2002-11-26
    • US09908824
    • 2001-07-20
    • Chih-Feng HuangKuo-Su Huang
    • Chih-Feng HuangKuo-Su Huang
    • H01L21336
    • H01L29/66681H01L29/0847H01L29/66674H01L29/7816H01L2924/0002H01L2924/00
    • The tradeoff between breakdown voltage and on-resistance for LDMOS devices has been improved by having two epitaxial N− regions instead of the single epitaxial N− region that is used by devices of the prior art. The resistivities and thicknesses of these two N− regions are chosen so that their mean resistivity is similar to that of the aforementioned single N− layer. A key feature is that the lower N− layer (i.e. the one closest to the P− substrate) has a resistivity that is greater than that of the upper N− layer. If these constraints are met, as described in greater detail in the specification, improvements in breakdown voltage of up to 60% can be achieved without having to increase the on resistance. A process for manufacturing the device is also described.
    • 通过具有两个外延N-区域而不是由现有技术的器件使用的单个外延N-区域来改善LDMOS器件的击穿电压和导通电阻之间的折衷。 选择这两个N-区域的电阻率和厚度,使得它们的平均电阻率类似于上述单个N-层的平均电阻率。 一个关键的特征是下层N-层(即最靠近P-衬底的层)具有大于上层N层的电阻率。 如果满足这些约束,如说明书中更详细描述的那样,可以实现高达60%的击穿电压的改善,而不必增加导通电阻。 还描述了用于制造该装置的方法。
    • 7. 发明授权
    • Isolated SCR ESD device
    • 隔离式SCR ESD器件
    • US08710544B2
    • 2014-04-29
    • US13345694
    • 2012-01-07
    • Chih-Feng Huang
    • Chih-Feng Huang
    • H01L29/73
    • H01L27/0262H01L29/7436
    • The present invention discloses an isolated SCR ESD device, comprising: a substrate; a first well located in the substrate, which is floating and has a first conductivity type; a first high density doped region located in the first well and having a second conductivity type; a second well nearby the first well and having the second conductivity type; a second high density doped region located in the second well and having the second conductivity type; and a third high density doped region located in the second well and having the first conductivity type, wherein the first high density doped region is for electrical connection with a pad, and wherein the first well is not provided with a high density doped region having the first conductivity type for connection with the pad.
    • 本发明公开了一种隔离型SCR ESD器件,包括:衬底; 位于衬底中的第一阱,其浮置并具有第一导电类型; 位于第一阱中并具有第二导电类型的第一高密度掺杂区; 第二井靠近第一井,具有第二导电类型; 位于第二阱中并具有第二导电类型的第二高密度掺杂区; 以及位于所述第二阱中并且具有所述第一导电类型的第三高密度掺杂区域,其中所述第一高密度掺杂区域用于与焊盘电连接,并且其中所述第一阱不具有高密度掺杂区域,所述高密度掺杂区域具有 用于与垫连接的第一导电类型。
    • 8. 发明授权
    • Semiconductor structure with high breakdown voltage and resistance
    • 半导体结构具有高击穿电压和电阻
    • US08492801B2
    • 2013-07-23
    • US11798206
    • 2007-05-11
    • Chiu-Chih ChiangChih-Feng Huang
    • Chiu-Chih ChiangChih-Feng Huang
    • H01L29/66
    • H01L28/20
    • A semiconductor structure with high breakdown voltage and high resistance and method for manufacturing the same. The semiconductor structure at least comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; two first wells having the first conductive type and formed within the deep well; a second well having the first conductive type and formed between the two first wells within the deep well, and an implant dosage of the second well lighter than an implant dosage of each of the two first wells; and two first doping regions having the first conductive type and respectively formed within the two first wells.
    • 具有高击穿电压和高电阻的半导体结构及其制造方法。 半导体结构至少包括具有第一导电类型的衬底; 在衬底中形成有第二导电类型的深阱; 具有第一导电类型并形成在深井内的两个第一阱; 具有第一导电类型并形成在深井内的两个第一阱之间的第二阱,以及比两个第一孔中的每一个的植入物剂量轻的第二阱的植入剂量; 和具有第一导电类型并分别形成在两个第一阱内的两个第一掺杂区域。
    • 10. 发明授权
    • Different-voltage device manufactured by a CMOS compatible process and high-voltage device used in the different-voltage device
    • 由CMOS兼容工艺制造的不同电压器件和用于不同电压器件的高压器件
    • US07858466B2
    • 2010-12-28
    • US11682621
    • 2007-03-06
    • Chih-Feng HuangTa-yung YangJenn-yu G. LinTuo-Hsin Chien
    • Chih-Feng HuangTa-yung YangJenn-yu G. LinTuo-Hsin Chien
    • H01L21/8238
    • H01L21/823814H01L21/823857H01L21/823892
    • A method of manufacturing different-voltage devices mainly comprises forming at least one high-voltage well in high-voltage device regions, at least one N-well in low-voltage device regions, at least one P-well in low-voltage device regions, source/drain wells in high-voltage device regions, and isolation wells in isolation regions in a p-type substrate. The breakdown voltage is adjusted by modulating the ion doping profile. Furthermore, parameters of implanting conductive ions are adjusted for implanting conductive ions into both high-voltage device regions and low-voltage device regions. The isolation wells formed in isolation regions between devices are for separating device formed over high-voltage device regions and device formed over low-voltage device regions. The thickness of a HV gate oxide layer is thicker than the thickness of an LV gate oxide layer for modulating threshold voltages of high-voltage devices and low-voltage devices.
    • 一种制造不同电压装置的方法主要包括在高电压装置区域中形成至少一个高电压阱,在低电压装置区域中形成至少一个N阱,在低电压装置区域中形成至少一个P阱 ,高压器件区域中的源/漏极阱以及p型衬底中的隔离区中的隔离阱。 通过调制离子掺杂分布来调整击穿电压。 此外,调整注入导电离子的参数,以将导电离子注入到高电压器件区域和低电压器件区域中。 在器件之间的隔离区域中形成的隔离阱用于在高电压器件区域上形成的分离器件和在低电压器件区域上形成的器件。 HV栅极氧化物层的厚度比用于调制高电压器件和低电压器件的阈值电压的LV栅极氧化物层的厚度厚。