会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR AVOIDING OXIDE UNDERCUT DURING PRE-SILICIDE CLEAN FOR THIN SPACER FETs
    • 用于减少用于稀薄间隔FET的预硅氧烷清洁剂下的氧化物沉积的方法
    • US20050064635A1
    • 2005-03-24
    • US10605311
    • 2003-09-22
    • Atul AjmeraAndres BryantPercy GilbertMichael GribelyukEdward MaciejewskiRenee MoShreesh Narasimha
    • Atul AjmeraAndres BryantPercy GilbertMichael GribelyukEdward MaciejewskiRenee MoShreesh Narasimha
    • H01L21/28H01L21/311H01L21/3205H01L21/336H01L21/8238H01L23/52H01L27/092H01L29/417H01L29/423H01L29/49H01L29/78H01L29/94
    • H01L21/02063H01L21/31116H01L21/823835H01L21/823864H01L29/665H01L29/6653H01L29/6656H01L2924/0002H01L2924/00
    • A method for forming a CMOS device in a manner so as to avoid dielectric layer undercut during a pre-silicide cleaning step is described. During formation of CMOS device comprising a gate stack on a semiconductor substrate surface, the patterned gate stack including gate dielectric below a conductor with vertical sidewalls, a dielectric layer is formed thereover and over the substrate surfaces. Respective nitride spacer elements overlying the dielectric layer are formed at each vertical sidewall. The dielectric layer on the substrate surface is removed using an etch process such that a portion of the dielectric layer underlying each spacer remains. Then, a nitride layer is deposited over the entire sample (the gate stack, the spacer elements at each gate sidewall, and substrate surfaces) and subsequently removed by an etch process such that only a portion of said nitride film (the “plug”) remains. The plug seals and encapsulates the dielectric layer underlying each said spacer, thus preventing the dielectric material from being undercut during the subsequent pre-silicide clean process. By preventing undercut, this invention also prevents the etch-stop film (deposited prior to contact formation) from coming into contact with the gate oxide. Thus, the integration of thin-spacer transistor geometries, which are required for improving transistor drive current, is enabled.
    • 描述了在预硅化物清洁步骤期间以避免电介质层底切的方式形成CMOS器件的方法。 在形成包括半导体衬底表面上的栅极堆叠的CMOS器件的情况下,图案化栅极堆叠包括在具有垂直侧壁的导体下方的栅极电介质,在衬底表面之上和之上形成介电层。 在每个垂直侧壁处形成覆盖在电介质层上的各种氮化物间隔元件。 使用蚀刻工艺去除衬底表面上的电介质层,使得保留每个间隔物下面的介电层的一部分。 然后,在整个样品(栅极堆叠,每个栅极侧壁和衬底表面处的间隔元件)上沉积氮化物层,然后通过蚀刻工艺去除,使得仅一部分所述氮化物膜(“插塞”) 遗迹。 插头密封并封装每个所述间隔件下面的电介质层,从而防止在随后的硅化物前处理过程中电介质材料被切削。 通过防止底切,本发明还防止蚀刻停止膜(在接触形成之前沉积)与栅极氧化物接触。 因此,能够实现提高晶体管驱动电流所需的薄间隔晶体管几何形状的集成。
    • 7. 发明授权
    • Bulk substrate FET integrated on CMOS SOI
    • 集成在CMOS SOI上的散装衬底FET
    • US08232599B2
    • 2012-07-31
    • US12683456
    • 2010-01-07
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • H01L27/12H01L21/86
    • H01L27/1207H01L21/84
    • An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    • 提供了一种集成电路,其将同一芯片上的体FET和SOI FET集成在一起,其中,本体FET包括在大块衬底上形成的栅极氧化物上的栅极导体,其中本体FET的栅极电介质具有相同的厚度, 与SOI FET的掩埋绝缘层基本共面。 在优选实施例中,通过在指定的大容量器件区域中与SOI层的有源区相邻的SOI层和SOI晶片的掩埋绝缘层形成体接触沟槽,从SOI晶片形成本体FET。 邻近体接触沟槽的SOI层的有源区域形成体FET的栅极导体,其覆盖形成本体FET的栅极电介质的下层掩埋绝缘层的一部分。
    • 8. 发明申请
    • BULK SUBSTRATE FET INTEGRATED ON CMOS SOI
    • 集成在CMOS SOI上的基极FET
    • US20120187492A1
    • 2012-07-26
    • US13425681
    • 2012-03-21
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • H01L27/088
    • H01L27/1207H01L21/84
    • An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    • 提供了一种集成电路,其将同一芯片上的体FET和SOI FET集成在一起,其中,本体FET包括在大块衬底上形成的栅极氧化物上的栅极导体,其中本体FET的栅极电介质具有相同的厚度, 与SOI FET的掩埋绝缘层基本共面。 在优选实施例中,通过在指定的大容量器件区域中与SOI层的有源区相邻的SOI层和SOI晶片的掩埋绝缘层形成体接触沟槽,从SOI晶片形成本体FET。 邻近体接触沟槽的SOI层的有源区域形成体FET的栅极导体,其覆盖形成本体FET的栅极电介质的下层掩埋绝缘层的一部分。
    • 10. 发明申请
    • COMPACT MODEL METHODOLOGY FOR PC LANDING PAD LITHOGRAPHIC ROUNDING IMPACT ON DEVICE PERFORMANCE
    • 用于PC路面平台的简化模型方法对设备性能的影响
    • US20110225562A1
    • 2011-09-15
    • US13100584
    • 2011-05-04
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • G06F9/455
    • G06F17/5036
    • A method and computer program product for modeling a semiconductor transistor device structure having an active device area, a gate structure, and including a conductive line feature connected to the gate structure and disposed above the active device area, the conductive line feature including a conductive landing pad feature disposed near an edge of the active device area in a circuit to be modeled. The method includes determining a distance between an edge defined by the landing pad feature to an edge of the active device area, and, from modeling a lithographic rounding effect of the landing pad feature, determining changes in width of the active device area as a function of the distance between an edge defined by the landing pad feature to an edge of the active device area. From these data, an effective change in active device area width (deltaW adder) is related to the determined distance. Then, transistor model parameter values in a transistor compact model are updated for the transistor device to include deltaW adder values to be added to a built-in deltaW value. A netlist used in a device simulation may then include the deltaW adder values to quantify the influence of the lithographic rounding effect of the landing pad feature.
    • 一种用于对具有有源器件区域,栅极结构并且包括连接到栅极结构并且设置在有源器件区域上方的导线特征来建模半导体晶体管器件结构的方法和计算机程序产品,所述导电线特征包括导电层 衬垫特征设置在待建模的电路中的有源器件区域的边缘附近。 该方法包括确定由着陆焊盘特征限定的边缘与有源器件区域的边缘之间的距离,以及通过建模着陆焊盘特征的光刻圆整效应,确定作为功能的有源器件区域的宽度变化 由着陆垫特征限定的边缘到活动设备区域的边缘之间的距离。 根据这些数据,有源器件区域宽度(deltaW加法器)的有效变化与确定的距离有关。 然后,晶体管紧凑型模型中的晶体管模型参数值被更新为晶体管器件,以包括要添加到内置deltaW值的ΔW加法器值。 在设备仿真中使用的网表可以包括deltaW加法器值,以量化着陆垫特征的光刻舍入效应的影响。