会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for mining model accuracy display
    • 挖掘模型精度显示的系统和方法
    • US07124054B2
    • 2006-10-17
    • US10186052
    • 2002-06-28
    • Pyungchul KimZhaohui TangDavid Earl HeckermanScott Conrad Oveson
    • Pyungchul KimZhaohui TangDavid Earl HeckermanScott Conrad Oveson
    • G06E1/00
    • G06F17/18G06F17/30539
    • Systems and methods are provided for producing displays of the accuracy of data mining or statistical models that produce associative predictions. For all cases in a testing data set, the model makes predictions and provides associated probabilities. The cases are sorted by their probability of making accurate predictions and a graph is made of the accuracy of the model over various subsets containing the highest probability cases as evaluated by the model. Where a number of probabilities are presented for the predictions in a basket of predictions, those probabilities are combined to yield a probability score for the entire basket. Additionally, the accuracy of a model over different basket sizes may be graphed. The accuracy graph may also be produced for any models making a prediction, by graphing the probability of making accurate predictions and a graph made of the accuracy of the model over various subsets of the data containing the highest probability cases.
    • 提供系统和方法用于产生数据挖掘的准确性的显示或产生关联预测的统计模型。 对于测试数据集中的所有情况,模型进行预测并提供相关概率。 这些案例按照准确预测的概率进行排序,并且通过模型评估,对包含最高概率案例的各种子集的模型精度进行了图形化。 在对一篮子预测中的预测提出若干概率的情况下,将这些概率组合起来以产生整个篮子的概率得分。 此外,可以绘制不同篮子尺寸的模型的精度。 也可以通过绘制准确预测的概率和通过包含最高概率情况的数据的各种子集对模型的精度进行绘制的图形来产生准确度图。
    • 7. 发明授权
    • Mixtures of Bayesian networks
    • 贝叶斯网络的混合
    • US06807537B1
    • 2004-10-19
    • US08985114
    • 1997-12-04
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。
    • 10. 发明授权
    • Collaborative filtering with mixtures of bayesian networks
    • 使用贝叶斯网络混合进行协同过滤
    • US06496816B1
    • 2002-12-17
    • US09220199
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。