会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • FALSE DISCOVERY RATE FOR GRAPHICAL MODLES
    • 图形模型的虚拟发现率
    • US20090106172A1
    • 2009-04-23
    • US11873440
    • 2007-10-17
    • David E. HeckermanJennifer ListgartenCarl M. Kadie
    • David E. HeckermanJennifer ListgartenCarl M. Kadie
    • G06F15/18
    • G06N7/005
    • The claimed subject matter provides systems and/or methods that determines a number of non-spurious arcs associated with a learned graphical model. The system can include devices and mechanisms that utilize learning algorithms and datasets to generate learned graphical models and graphical models associated with null permutations of the datasets, ascertaining the average number of arcs associated with the graphical models associated with null permutations of the datasets, enumerating the total number of arcs affiliated with the learned graphical model, and presenting a ratio of the average number of arcs to the total number of arcs, the ratio indicative of the number of non-spurious arcs associated the learned graphical model.
    • 所要求保护的主题提供确定与学习的图形模型相关联的多个非虚假​​弧的系统和/或方法。 该系统可以包括利用学习算法和数据集来生成学习图形模型和与数据集的零排列相关联的图形模型的装置和机制,确定与与数据集的零排列相关联的图形模型相关联的平均弧数,列举 与所学习的图形模型相关联的弧的总数,并且呈现平均弧数与总弧数的比率,该比率表示与所学习的图形模型相关联的非虚假弧的数量。
    • 8. 发明授权
    • False discover rate for graphical models
    • 图形模型的假发现率
    • US07885905B2
    • 2011-02-08
    • US11873440
    • 2007-10-17
    • David E HeckermanJennifer ListgartenCarl M Kadie
    • David E HeckermanJennifer ListgartenCarl M Kadie
    • G06F15/18
    • G06N7/005
    • The claimed subject matter provides systems and/or methods that determines a number of non-spurious arcs associated with a learned graphical model. The system can include devices and mechanisms that utilize learning algorithms and datasets to generate learned graphical models and graphical models associated with null permutations of the datasets, ascertaining the average number of arcs associated with the graphical models associated with null permutations of the datasets, enumerating the total number of arcs affiliated with the learned graphical model, and presenting a ratio of the average number of arcs to the total number of arcs, the ratio indicative of the number of non-spurious arcs associated the learned graphical model.
    • 所要求保护的主题提供确定与学习的图形模型相关联的多个非虚假​​弧的系统和/或方法。 该系统可以包括利用学习算法和数据集来生成学习图形模型和与数据集的零排列相关联的图形模型的装置和机制,确定与与数据集的零排列相关联的图形模型相关联的平均弧数,列举 与所学习的图形模型相关联的弧的总数,并且呈现平均弧数与总弧数的比率,该比率表示与所学习的图形模型相关联的非虚假弧的数量。