会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Pipeline A/D converter and method of pipeline A/D conversion
    • 管道A / D转换器和管道A / D转换方法
    • US20070008282A1
    • 2007-01-11
    • US11479011
    • 2006-06-30
    • Shinichi OgitaMitsuhiko OtaniKouji YamaguchiTakayasu KitoNaohisa Hatani
    • Shinichi OgitaMitsuhiko OtaniKouji YamaguchiTakayasu KitoNaohisa Hatani
    • G09G5/08
    • H03M1/108H03M1/442
    • A pipeline A/D converter of the present invention includes a plurality of stages each operating for A/D conversion and a digital computing portion that outputs an A/D converted signal based on a digital signal output from each of the stages. In each of the stages, an analog signal from the preceding stage is sampled by passive elements C1 and C2 in a first period, and one of the passive elements is used as a feedback element in a second period to perform adding/subtracting with respect to the signal sampled by the other passive element. By the control from the digital computing portion, a test signal Tink is used instead of an analog output signal Vo(k−1), and a unique conversion-error value is detected and corrected based on the digital signal obtained by the operation of each of the stages. It is possible to obtain a high-resolution A/D convert that can suppress a conversion error caused by the relative error of capacitors used for analog signal processing without decreasing the speed of A/D conversion.
    • 本发明的流水线A / D转换器包括多个用于A / D转换的工作级和基于从每个级输出的数字信号输出A / D转换的信号的数字计算部分。 在每个阶段中,来自前一级的模拟信号在第一周期中被无源元件C 1和C 2采样,并且在第二周期中将无源元件中的一个作为反馈元件用于执行与/ 相对于被另一无源元件采样的信号。 通过数字计算部分的控制,使用测试信号Tink而不是模拟输出信号Vo(k-1),并且基于通过每个操作获得的数字信号来检测和校正唯一的转换误差值 的阶段。 可以获得可以抑制由模拟信号处理所使用的电容器的相对误差引起的转换误差而不降低A / D转换速度的高分辨率A / D转换。
    • 4. 发明申请
    • Phase adjustment device, phase adjustment method, and semiconductor integrated circuit
    • 相位调整装置,相位调整方法和半导体集成电路
    • US20060232314A1
    • 2006-10-19
    • US11396453
    • 2006-04-04
    • Naohisa HataniMitsuhiko OtaniShinichi OgitaKouji YamagutiTakayasu Kito
    • Naohisa HataniMitsuhiko OtaniShinichi OgitaKouji YamagutiTakayasu Kito
    • H03K5/13
    • H03K5/133H03K2005/00058H03L7/07H03L7/0814
    • A phase adjustment device which adjusts a phase difference between a first output pulse signal and a second output pulse signal according to a phase difference between a first input pulse signal and a second input pulse signal, the phase adjustment device including: a first selection unit which selects one of the first input pulse signal and an adjustment pulse signal that is used for adjustment; a second selection unit which selects one of the second input pulse signal and the adjustment pulse signal; a first delay unit which delays the signal selected by the second selection unit, and a delay amount of the first delay unit is adjustable; a first output unit which outputs, as the first output pulse signal, the signal selected by the first selection unit; a second output unit which outputs, as the second output pulse signal, the signal delayed by the first delay unit; and a phase adjustment unit which adjusts the delay amount so as to equalize phases of the first output pulse signal and the second output pulse signal, in the case where both the first selection unit and the second selection unit have selected the adjustment pulse signal.
    • 一种相位调整装置,其根据第一输入脉冲信号和第二输入脉冲信号之间的相位差来调整第一输出脉冲信号和第二输出脉冲信号之间的相位差,所述相位调整装置包括:第一选择单元, 选择第一输入脉冲信号和用于调整的调整脉冲信号之一; 第二选择单元,其选择第二输入脉冲信号和调整脉冲信号中的一个; 第一延迟单元,其延迟由第二选择单元选择的信号,并且第一延迟单元的延迟量是可调节的; 第一输出单元,其输出由第一选择单元选择的信号作为第一输出脉冲信号; 输出由第一延迟单元延迟的信号作为第二输出脉冲信号的第二输出单元; 以及在所述第一选择单元和所述第二选择单元都选择了所述调整脉冲信号的情况下,调整所述延迟量以均衡所述第一输出脉冲信号和所述第二输出脉冲信号的相位的相位调整单元。
    • 6. 发明申请
    • Front-end signal processing circuit and imaging device
    • 前端信号处理电路及成像装置
    • US20070216778A1
    • 2007-09-20
    • US11723117
    • 2007-03-16
    • Naohisa HataniMitsuhiko OtaniKouji Yamaguchi
    • Naohisa HataniMitsuhiko OtaniKouji Yamaguchi
    • H04N5/228
    • H04N5/361H04N5/3575H04N5/3655
    • A front-end signal processing circuit that stabilizes a black level of an output signal of an image sensor in a prescribed set level, without being influenced by a DC offset component of circuit elements making up a feedback loop, and an imaging device including such the front-end signal processing circuit, are provided. The front-end signal processing circuit includes a feedback loop made up of a luminance detecting/digitizing section and a black level clamp section, and clamps a black level of an output signal of an image sensor to a prescribed set level. The front-end signal processing circuit further includes an offset correction section. The offset correction section stores an offset value being a difference between a signal level of an OB region of the image sensor and the prescribed level, subtracts the offset value from a digital luminance signal corresponding to an effective pixel region of the image sensor, and outputs the obtained signal.
    • 一种前端信号处理电路,其在规定的设定电平下稳定图像传感器的输出信号的黑电平,而不受构成反馈回路的电路元件的DC偏移分量的影响;以及成像装置, 前端信号处理电路。 前端信号处理电路包括由亮度检测/数字化部分和黑电平钳位部分构成的反馈回路,并将图像传感器的输出信号的黑电平钳位到规定的设定电平。 前端信号处理电路还包括偏移校正部分。 偏移校正部存储作为图像传感器的OB区域的信号电平与规定电平之间的差的偏移值,从与图像传感器的有效像素区域对应的数字亮度信号中减去偏移值,并输出 获得的信号。
    • 7. 发明授权
    • Front-end signal processing circuit and imaging device
    • 前端信号处理电路及成像装置
    • US07652690B2
    • 2010-01-26
    • US11723117
    • 2007-03-16
    • Naohisa HataniMitsuhiko OtaniKouji Yamaguchi
    • Naohisa HataniMitsuhiko OtaniKouji Yamaguchi
    • H04N5/228
    • H04N5/361H04N5/3575H04N5/3655
    • A front-end signal processing circuit that stabilizes a black level of an output signal of an image sensor in a prescribed set level, without being influenced by a DC offset component of circuit elements making up a feedback loop, and an imaging device including such the front-end signal processing circuit, are provided.The front-end signal processing circuit includes a feedback loop made up of a luminance detecting/digitizing section and a black level clamp section, and clamps a black level of an output signal of an image sensor to a prescribed set level. The front-end signal processing circuit further includes an offset correction section. The offset correction section stores an offset value being a difference between a signal level of an OB region of the image sensor and the prescribed level, subtracts the offset value from a digital luminance signal corresponding to an effective pixel region of the image sensor, and outputs the obtained signal.
    • 一种前端信号处理电路,其在规定的设定电平下稳定图像传感器的输出信号的黑电平,而不受构成反馈回路的电路元件的DC偏移分量的影响;以及成像装置, 前端信号处理电路。 前端信号处理电路包括由亮度检测/数字化部分和黑电平钳位部分构成的反馈回路,并将图像传感器的输出信号的黑电平钳位到规定的设定电平。 前端信号处理电路还包括偏移校正部分。 偏移校正部存储作为图像传感器的OB区域的信号电平与规定电平之间的差的偏移值,从与图像传感器的有效像素区域对应的数字亮度信号中减去偏移值,并输出 获得的信号。
    • 8. 发明授权
    • Pipeline A/D converter and method of pipeline A/D conversion
    • 管道A / D转换器和管道A / D转换方法
    • US07348916B2
    • 2008-03-25
    • US11479011
    • 2006-06-30
    • Shinichi OgitaMitsuhiko OtaniKouji YamaguchiTakayasu KitoNaohisa Hatani
    • Shinichi OgitaMitsuhiko OtaniKouji YamaguchiTakayasu KitoNaohisa Hatani
    • H03M1/38
    • H03M1/108H03M1/442
    • A pipeline A/D converter of the present invention includes a plurality of stages each operating for A/D conversion and a digital computing portion that outputs an A/D converted signal based on a digital signal output from each of the stages. In each of the stages, an analog signal from the preceding stage is sampled by passive elements C1 and C2 in a first period, and one of the passive elements is used as a feedback element in a second period to perform adding/subtracting with respect to the signal sampled by the other passive element. By the control from the digital computing portion, a test signal Tink is used instead of an analog output signal Vo(k−1), and a unique conversion-error value is detected and corrected based on the digital signal obtained by the operation of each of the stages. It is possible to obtain a high-resolution A/D convert that can suppress a conversion error caused by the relative error of capacitors used for analog signal processing without decreasing the speed of A/D conversion.
    • 本发明的流水线A / D转换器包括多个用于A / D转换的工作级和基于从每个级输出的数字信号输出A / D转换的信号的数字计算部分。 在每个阶段中,来自前一级的模拟信号在第一周期中被无源元件C 1和C 2采样,并且在第二周期中将无源元件中的一个作为反馈元件用于执行与/ 相对于被另一无源元件采样的信号。 通过数字计算部分的控制,使用测试信号Tink而不是模拟输出信号Vo(k-1),并且基于通过每个操作获得的数字信号来检测和校正唯一的转换误差值 的阶段。 可以获得可以抑制由模拟信号处理所使用的电容器的相对误差引起的转换误差而不降低A / D转换速度的高分辨率A / D转换。
    • 10. 发明授权
    • Two-step parallel A/D converter
    • 两级并行A / D转换器
    • US5841389A
    • 1998-11-24
    • US833965
    • 1997-04-11
    • Norihide KinugasaMitsuhiko OtaniKatsumi HironakaShinichi Ogita
    • Norihide KinugasaMitsuhiko OtaniKatsumi HironakaShinichi Ogita
    • H03M1/16H03M1/36
    • H03M1/165H03M1/365
    • Provided is a two-step parallel A/D converter capable of operating at a higher speed than in the prior art and easily performing correction of upper bit data. An upper limit voltage V.sub.H of a voltage range for lower bit conversion is amplified on the basis of a median voltage V.sub.M of the voltage range by a second differential amplifier, and the amplified voltage is set to a high level reference voltage SUB.sub.H for lower bit conversion. A lower limit voltage V.sub.L of the voltage range is amplified on the basis of the median voltage V.sub.M by a third differential amplifier, and the amplified voltage is set to a low level reference voltage SUB.sub.L for lower bit conversion. A voltage V.sub.IN of an input analog signal is amplified on the basis of the voltage V.sub.M by a first differential amplifier, and lower bit data is obtained from a position between the voltage SUB.sub.H and the voltage SUB.sub.L which is occupied by an obtained voltage SUB.sub.IN. The voltages SUB.sub.H and SUB.sub.L are not changed by the voltage V.sub.IN of the input analog signal. Consequently, a settling time can be shortened more than in the prior art.
    • 提供了一种两级并行A / D转换器,其能够以比现有技术更高的速度运行并且容易地执行高位数据的校正。 基于第二差分放大器的电压范围的中值电压VM来放大用于低位转换的电压范围的上限电压VH,并且将放大的电压设置为用于较低位转换的高电平参考电压SUBH 。 电压范围的下限电压VL由第三差分放大器基于中值电压VM放大,放大电压被设定为低电平基准电压SUBL用于低位转换。 输入模拟信号的电压VIN通过第一差分放大器基于电压VM放大,并且从电压SUBH和所获得的电压SUBIN占据的电压SUBL之间的位置获得低位数据。 电压SUBH和SUBL不会被输入模拟信号的电压VIN改变。 因此,与现有技术相比,可以缩短建立时间。