会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Flash memory with controlled wordline width
    • 具有受控字线宽度的闪存
    • US06653190B1
    • 2003-11-25
    • US10023436
    • 2001-12-15
    • Jean Y. YangKouros GhandehariTazrien KamalMinh Van NgoMark T. RamsbeyDawn M. HopperAngela T. HuiScott A. Bell
    • Jean Y. YangKouros GhandehariTazrien KamalMinh Van NgoMark T. RamsbeyDawn M. HopperAngela T. HuiScott A. Bell
    • H01L21336
    • H01L27/11568H01L27/115
    • A method of manufacturing for a MirrorBit® Flash memory includes depositing a charge-trapping material over a semiconductor substrate and implanting first and second bitlines in the semiconductor substrate. A wordline material is deposited over the charge-trapping dielectric material and a hard mask material deposited thereon. An anti-reflective coating (ARC) material is deposited on the hard mask material and a photoresist material is deposited on the ARC followed by processing the photoresist material and the ARC material to form a photomask of a patterned photoresist and a patterned ARC. The hard mask material is processed using the photomask to form a hard mask. The patterned photoresist is removed and then the patterned ARC without damaging the hard mask or the wordline material. The wordline material is processed using the hard mask to form a wordline and the hard mask is removed without damaging the wordline or the charge-trapping material.
    • 用于MirrorBit(闪存)闪存的制造方法包括在半导体衬底上沉积电荷捕获材料并在半导体衬底中注入第一和第二位线。 字线材料沉积在电荷俘获电介质材料上并沉积在其上的硬掩模材料。 将抗反射涂层(ARC)材料沉积在硬掩模材料上,并且将光致抗蚀剂材料沉积在ARC上,随后处理光致抗蚀剂材料和ARC材料以形成图案化光致抗蚀剂和图案化ARC的光掩模。 使用光掩模处理硬掩模材料以形成硬掩模。 去除图案化的光致抗蚀剂,然后去除图案化的ARC,而不损坏硬掩模或字线材料。 使用硬掩模处理字线材料以形成字线,并且去除硬掩模而不损坏字线或电荷捕获材料。
    • 8. 发明授权
    • Damascene processing employing low Si-SiON etch stop layer/arc
    • 使用低Si-SiON蚀刻停止层/电弧的镶嵌加工
    • US06459155B1
    • 2002-10-01
    • US09729528
    • 2000-12-05
    • Ramkumar SubramanianDawn M. HopperMinh Van Ngo
    • Ramkumar SubramanianDawn M. HopperMinh Van Ngo
    • H01L214763
    • H01L21/76829H01L21/0276H01L21/0332H01L21/76807
    • The dimensional accuracy of trench formation and, hence, metal line width, in damascene technology is improved by employing a low Si—SiON etch stop layer/ARC with reduced etch selectivity with respect to the overlying dielectric material but having a reduced extinction coefficient (k). Embodiments include via first-trench last dual damascene techniques employing a low Si—SiON middle etch stop layer/ARC having an extinction coefficient of about −0.3 to about −0.6, e.g., about −0.35, with reduced silicon and increased oxygen vis-à-vis a SiON etch stop layer having an extinction coefficient of about −1.1. Embodiments also include removing about 60% to about 90% of the low Si—SiON etch stop layer/ARC during trench formation, thereby reducing capacitance.
    • 通过使用低Si-SiON蚀刻停止层/ ARC,相对于上覆电介质材料具有降低的蚀刻选择性但具有降低的消光系数(k(k)),改善了镶嵌技术中沟槽形成的尺寸精度以及因此金属线宽度 )。 实施例包括通过第一沟槽最后的双镶嵌技术,其使用具有约-0.3至约-0.6,例如约-0.35的消光系数的低Si-SiON中间蚀刻停止层/ ARC,其中还原的硅和增加的氧相对于 - 具有约-1.1的消光系数的SiON蚀刻停止层。 实施例还包括在沟槽形成期间去除约60%至约90%的低Si-SiON蚀刻停止层/ ARC,从而降低电容。
    • 9. 发明授权
    • HDP deposition hillock suppression method in integrated circuits
    • 集成电路中的HDP沉积小丘抑制方法
    • US06482755B1
    • 2002-11-19
    • US09880513
    • 2001-06-12
    • Minh Van NgoDawn M. HopperRobert A. Huertas
    • Minh Van NgoDawn M. HopperRobert A. Huertas
    • H01L2131
    • H01L21/76834H01L21/3212H01L21/76801H01L21/76883
    • An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A dielectric layer is formed over the semiconductor substrate has an opening formed therein. A barrier layer of titanium, tantalum, tungsten, or a nitride of the aforegoing lines the opening, and a copper or copper alloy conductor core fills the channel opening over the barrier layer. After planarization of the conductor core and the barrier layer, an ammonia, nitrogen hydride, or hydrogen plasma treatment is performed below 300° C. and above 3000 watts source power to reduce the residual oxide on the conductor core material. A silicon nitride capping layer is deposited by high density plasma (HDP) deposition with the source power between 2250 and 2750 watts and the bias power between 1800 and 2200 watts to suppress the formation of hillocks.
    • 提供了具有半导体器件的半导体衬底的集成电路及其制造方法。 在半导体衬底上方形成有形成在其中的开口的电介质层。 前述的钛,钽,钨或氮化物的阻挡层形成开口,铜或铜合金导体芯填充阻挡层上的通道开口。 在导体芯和阻挡层平坦化之后,进行氨,氮化氢或氢等离子体处理,其在低于300℃和高于3000瓦的源功率下进行,以减少导体芯材上的残余氧化物。 氮化硅覆盖层通过高功率等离子体(HDP)沉积沉积,源功率在2250和2750瓦之间,偏置功率在1800至2200瓦之间,以抑制形成小丘。
    • 10. 发明授权
    • Process for fabricating a semiconductor device using a silicon-rich silicon nitride ARC
    • 使用富硅氮化物ARC制造半导体器件的工艺
    • US06395644B1
    • 2002-05-28
    • US09484606
    • 2000-01-18
    • Dawn M. HopperMinh Van NgoDavid K. Foote
    • Dawn M. HopperMinh Van NgoDavid K. Foote
    • H01L21302
    • H01L21/3185H01L21/32139Y10S438/952
    • A process for fabricating a semiconductor device using an ARC layer includes the formation of a silicon-rich silicon nitride material to provide an anti-reflective layer over a electrically conductive or semiconductor surface. The silicon-rich silicon nitride material is plasma deposited to provide a material having a desired refractive index, thickness uniformity, and density. The process includes the formation of a device layer on a semiconductor substrate. The device layer includes at least a silicon layer and a silicon oxide layer. A silicon-rich silicon nitride layer is formed to overlie the device layer. The silicon-rich silicon nitride material can be selectively etched, such that the silicon material and the silicon oxide material in the underlying device layer are not substantially etched.
    • 使用ARC层制造半导体器件的方法包括形成富硅的氮化硅材料,以在导电或半导体表面上提供抗反射层。 富硅氮化硅材料被等离子体沉积以提供具有期望的折射率,厚度均匀性和密度的材料。 该方法包括在半导体衬底上形成器件层。 器件层至少包括硅层和氧化硅层。 形成富含硅的氮化硅层以覆盖器件层。 可以选择性地蚀刻富硅的氮化硅材料,使得底层器件层中的硅材料和氧化硅材料基本上不被蚀刻。