会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Field-effect transistor type biosensor and bio-signal amplification method thereof
    • 场效应晶体管型生物传感器及其生物信号放大方法
    • US20110045466A1
    • 2011-02-24
    • US12572555
    • 2009-10-02
    • Ming-Yu LinYuh-Shyong YangHsin Chen
    • Ming-Yu LinYuh-Shyong YangHsin Chen
    • C12Q1/68C12M1/34
    • C12Q1/682C12Q1/6804C12Q1/6825G01N27/4145C12Q2565/607C12Q2531/125C12Q2527/101C12Q2521/101
    • The present invention discloses a field-effect transistor (FET) type biosensor and a bio-signal amplification method. The biosensor comprises a field-effect transistor chip, a biomolecular immobilization layer and at least one primer. The biomolecular immobilization layer is formed on a gate surface of the FET chip or a surface of an external device connected to a gate. The primer used for performing a nucleic acid amplification is immobilized onto the gate surface or the external device surface by binding with the biomolecular immobilization layer, such that an analyte can have a nucleic acid amplification reaction with the primer at room temperature or a constant temperature environment. With an extension of a nucleic acid sequence, the inducing electricity of the FET gate surface can be increased so as to amplify an inspection signal, thereby enhancing the sensitivity of the FET type biosensor effectively.
    • 本发明公开了一种场效应晶体管(FET)型生物传感器和生物信号放大方法。 生物传感器包括场效应晶体管芯片,生物分子固定化层和至少一个引物。 生物分子固定化层形成在FET芯片的栅极表面或连接到栅极的外部器件的表面上。 用于进行核酸扩增的引物通过与生物分子固定化酶结合而固定在栅极表面或外部器件表面上,使得分析物可以在室温或恒温环境下与引物进行核酸扩增反应 。 通过核酸序列的延伸,可以增加FET栅极表面的感应电力,从而放大检查信号,从而有效提高FET型生物传感器的灵敏度。
    • 2. 发明授权
    • Method of manufacturing nanoparticle chain
    • 制造纳米颗粒链的方法
    • US08921075B2
    • 2014-12-30
    • US13488748
    • 2012-06-05
    • Yen-Pei LuMing-Yu LinYu-Sheng LaiYuh-Shyong YangHsuen-Li ChenYu-Cheng Ou
    • Yen-Pei LuMing-Yu LinYu-Sheng LaiYuh-Shyong YangHsuen-Li ChenYu-Cheng Ou
    • C12P19/34C12Q1/68
    • C12P19/34C12Q1/6834C12Q2525/151C12Q2525/307C12Q2563/155
    • A method of manufacturing a nanoparticle chain is disclosed. The method comprises the steps of: providing a single-stranded circular primer with a determined length, and amplifying the single-stranded circular primer into single-stranded DNA nanotemplate by an isothermal nucleotide amplification reaction such that an end of the single-stranded DNA nanotemplate is fixed to a surface of a substrate; and adding a single-stranded DNA probe conjugated with nanoparticle at one end of which, and attaching the single-stranded DNA probe to the corresponding sequence on the single-stranded DNA nanotemplate to form a nanoparticles chain. The method of manufacturing a nanoparticle chain further comprises providing a fluid, and the flowing direction of the fluid controls the aligning direction of the nanoparticle chain. Wherein, the inter-nanoparticle distance of the nanoparticle chain can be adjusted by adjusting a reaction temperature or adding the single-stranded DNA probe without conjugating with nanoparticles.
    • 公开了一种制造纳米颗粒链的方法。 该方法包括以下步骤:提供具有确定长度的单链环状引物,并通过等温核苷酸扩增反应将单链环状引物扩增成单链DNA纳米模板,使得单链DNA纳米模板的末端 固定在基板的表面上; 并在其一端加入与纳米颗粒缀合的单链DNA探针,并将单链DNA探针连接到单链DNA纳米模板上的相应序列上以形成纳米颗粒链。 制造纳米颗粒链的方法还包括提供流体,流体的流动方向控制纳米颗粒链的排列方向。 其中,可以通过调节反应温度或加入单链DNA探针而不与纳米颗粒共轭来调节纳米颗粒链的纳米颗粒间距离。
    • 4. 发明申请
    • Method of Manufacturing Nanoparticle Chain
    • 制造纳米粒子链的方法
    • US20130273610A1
    • 2013-10-17
    • US13488748
    • 2012-06-05
    • Yen-Pei LuMing-Yu LinYu-Sheng LaiYuh-Shyong YangHsuen-Li ChenYu-Cheng Ou
    • Yen-Pei LuMing-Yu LinYu-Sheng LaiYuh-Shyong YangHsuen-Li ChenYu-Cheng Ou
    • C12P19/34
    • C12P19/34C12Q1/6834C12Q2525/151C12Q2525/307C12Q2563/155
    • A method of manufacturing a nanoparticle chain is disclosed. The method comprises the steps of: providing a single-stranded circular primer with a determined length, and amplifying the single-stranded circular primer into single-stranded DNA nanotemplate by an isothermal nucleotide amplification reaction such that an end of the single-stranded DNA nanotemplate is fixed to a surface of a substrate; and adding a single-stranded DNA probe conjugated with nanoparticle at one end of which, and attaching the single-stranded DNA probe to the corresponding sequence on the single-stranded DNA nanotemplate to form a nanoparticles chain. The method of manufacturing a nanoparticle chain further comprises providing a fluid, and the flowing direction of the fluid controls the aligning direction of the nanoparticle chain. Wherein, the inter-nanoparticle distance of the nanoparticle chain can be adjusted by adjusting a reaction temperature or adding the single-stranded DNA probe without conjugating with nanoparticles.
    • 公开了一种制造纳米颗粒链的方法。 该方法包括以下步骤:提供具有确定长度的单链环状引物,并通过等温核苷酸扩增反应将单链环状引物扩增成单链DNA纳米模板,使得单链DNA纳米模板的末端 固定在基板的表面上; 并在其一端加入与纳米颗粒缀合的单链DNA探针,并将单链DNA探针连接到单链DNA纳米模板上的相应序列上以形成纳米颗粒链。 制造纳米颗粒链的方法还包括提供流体,流体的流动方向控制纳米颗粒链的排列方向。 其中,可以通过调节反应温度或加入单链DNA探针而不与纳米颗粒共轭来调节纳米颗粒链的纳米颗粒间距离。
    • 8. 发明申请
    • IMAGE DATA PROCESSING METHOD AND IMAGE DISPLAY APPARATUS
    • 图像数据处理方法和图像显示装置
    • US20090010569A1
    • 2009-01-08
    • US11867696
    • 2007-10-05
    • Po-Chin HuMing-Yu LinWei-Chen Tsai
    • Po-Chin HuMing-Yu LinWei-Chen Tsai
    • G06K9/32
    • G06T3/0056
    • An image data processing method is provided. In this method, a plurality of original pixel values of an image is input. An interpolation position of a target pixel in the image is determined. Whether the interpolation position is in a central region of an object or in a marginal region of an object is determined. A pixel value interpolation with respect to the interpolation position is performed. When the interpolation position is in the central region of an object, the pixel value interpolation is performed in a first calculation mode, and when the interpolation position is in the marginal region of an object, the pixel value interpolation is performed in a second calculation mode, wherein the first calculation mode may be a low pass filtering interpolation mode, and the second calculation mode may be a linear interpolation mode.
    • 提供了图像数据处理方法。 在该方法中,输入图像的多个原始像素值。 确定图像中的目标像素的内插位置。 确定内插位置是否在物体的中心区域或物体的边缘区域中。 执行相对于插补位置的像素值插值。 当内插位置在对象的中心区域时,以第一计算模式执行像素值内插,并且当内插位置在对象的边缘区域中时,以第二计算模式执行像素值内插 其中,所述第一计算模式可以是低通滤波插值模式,并且所述第二计算模式可以是线性插值模式。
    • 10. 发明授权
    • Method of forming a capacitor with high capacitance and low voltage coefficient
    • 形成具有高电容和低电压系数的电容器的方法
    • US06489196B1
    • 2002-12-03
    • US10055943
    • 2002-01-28
    • Ming-Yu LinHsueh-Wen Wang
    • Ming-Yu LinHsueh-Wen Wang
    • H01L218242
    • H01L28/55
    • The present invention provides a method of forming a capacitor in an integrated circuit. The method comprises providing a semiconductor substrate having a conductive layer thereon. The partial conductive layer is removed to form an electrode. A plurality of first dopants are implanted on a surface of the electrode to form a first doped region. Then a plurality of second dopants are implanted into the electrode to form a second doped region below the first doped region. Then the capacitor is formed comprising the electrode. The first doped region and the second region can reduce voltage coefficient as well as increase capacitance of the capacitor.
    • 本发明提供一种在集成电路中形成电容器的方法。 该方法包括提供其上具有导电层的半导体衬底。 去除部分导电层以形成电极。 多个第一掺杂剂注入电极的表面以形成第一掺杂区域。 然后将多个第二掺杂剂注入到电极中以在第一掺杂区域下方形成第二掺杂区域。 然后形成包括电极的电容器。 第一掺杂区域和第二区域可以降低电压系数以及增加电容器的电容。