会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Nuclear batteries
    • 核电池
    • US08134216B2
    • 2012-03-13
    • US13042444
    • 2011-03-07
    • Michael SpencerMVS ChandrashekharChris Thomas
    • Michael SpencerMVS ChandrashekharChris Thomas
    • H01L27/14
    • G21H1/02
    • We introduce a new technology for Manufacturable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. The small (submicron) thickness of the active volume of both the isotope layer and the semiconductor device is due to the short absorption length of beta electrons. The absorption length determines the self absorption of the beta particles in the radioisotope layer as well as the range, or travel distance, of the betas in the semiconductor converter which is typically a semiconductor device comprising at least one PN junction. Various devices and methods to solve the current industry problems and limitations are presented here.
    • 引进可制造,大功率密度,大容量利用核电的新技术。 Betavoltaic电池是需要长寿命,高功率密度或在恶劣环境中工作的能力的电池应用的绝佳选择。 为了优化用于这些应用或任何其它应用的贝塔伏特电池的性能,期望将β粒子能量转换成功率的效率最大化,同时增加整个装置的功率密度。 同位素层和半导体器件的有效体积的小(亚微米)厚度是由于β电子的短吸收长度。 吸收长度决定了放射性同位素层中的β粒子的自吸收以及通常是包括至少一个PN结的半导体器件的半导体转换器中的β的范围或行程距离。 这里介绍了解决当前行业问题和限制的各种设备和方法。
    • 2. 发明申请
    • Nuclear Batteries
    • 核电池
    • US20110241144A1
    • 2011-10-06
    • US13042444
    • 2011-03-07
    • Michael SpencerMVS ChandrashekharChris Thomas
    • Michael SpencerMVS ChandrashekharChris Thomas
    • H01L29/66
    • G21H1/02
    • We introduce a new technology for Manufactureable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. The small (submicron) thickness of the active volume of both the isotope layer and the semiconductor device is due to the short absorption length of beta electrons. The absorption length determines the self absorption of the beta particles in the radioisotope layer as well as the range, or travel distance, of the betas in the semiconductor converter which is typically a semiconductor device comprising at least one PN junction. Various devices and methods to solve the current industry problems and limitations are presented here.
    • 我们引进了一种可制造,大功率密度,大批量利用核电的新技术。 Betavoltaic电池是需要长寿命,高功率密度或在恶劣环境中工作的能力的电池应用的绝佳选择。 为了优化用于这些应用或任何其它应用的贝塔伏特电池的性能,期望将β粒子能量转换成功率的效率最大化,同时增加整个装置的功率密度。 同位素层和半导体器件的有效体积的小(亚微米)厚度是由于β电子的短吸收长度。 吸收长度决定了放射性同位素层中的β粒子的自吸收以及通常是包括至少一个PN结的半导体器件的半导体转换器中的β的范围或行程距离。 这里介绍了解决当前行业问题和限制的各种设备和方法。
    • 3. 发明授权
    • Nuclear batteries
    • 核电池
    • US08866245B2
    • 2014-10-21
    • US13351223
    • 2012-01-16
    • Michael SpencerMvs ChandrashekharChris Thomas
    • Michael SpencerMvs ChandrashekharChris Thomas
    • H01L27/14G21H1/02
    • G21H1/02
    • We introduce a new technology for Manufactureable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. Various devices and methods to solve the current industry problems and limitations are presented here.
    • 我们引进了一种可制造,大功率密度,大批量利用核电的新技术。 Betavoltaic电池是需要长寿命,高功率密度或在恶劣环境中工作的能力的电池应用的绝佳选择。 为了优化用于这些应用或任何其它应用的贝塔伏特电池的性能,期望将β粒子能量转换成功率的效率最大化,同时增加整个装置的功率密度。 这里介绍了解决当前行业问题和限制的各种设备和方法。
    • 4. 发明申请
    • Nuclear Batteries
    • 核电池
    • US20120133244A1
    • 2012-05-31
    • US13351223
    • 2012-01-16
    • Michael SpencerMvs ChandrashekharChris Thomas
    • Michael SpencerMvs ChandrashekharChris Thomas
    • G21H1/02
    • G21H1/02
    • We introduce a new technology for Manufactureable, High Power Density, High Volume Utilization Nuclear Batteries. Betavoltaic batteries are an excellent choice for battery applications which require long life, high power density, or the ability to operate in harsh environments. In order to optimize the performance of betavoltaic batteries for these applications or any other application, it is desirable to maximize the efficiency of beta particle energy conversion into power, while at the same time increasing the power density of an overall device. Various devices and methods to solve the current industry problems and limitations are presented here.
    • 我们引进了一种可制造,大功率密度,大批量利用核电的新技术。 Betavoltaic电池是需要长寿命,高功率密度或在恶劣环境中工作的能力的电池应用的绝佳选择。 为了优化用于这些应用或任何其它应用的贝塔伏特电池的性能,期望将β粒子能量转换成功率的效率最大化,同时增加整个装置的功率密度。 这里介绍了解决当前行业问题和限制的各种设备和方法。
    • 5. 发明申请
    • Betavoltaic battery with a shallow junction and a method for making same
    • 具有浅结的Betavoltaic电池及其制造方法
    • US20110287567A1
    • 2011-11-24
    • US13195484
    • 2011-08-01
    • Michael SpencerMVS Chandrashekhar
    • Michael SpencerMVS Chandrashekhar
    • H01L21/20
    • H01L21/02625G21H1/02G21H1/06H01L21/02378H01L21/02529H01L21/02579
    • This is a novel SiC betavoltaic device (as an example) which comprises one or more “ultra shallow” P+N− SiC junctions and a pillared or planar device surface (as an example). Junctions are deemed “ultra shallow”, since the thin junction layer (which is proximal to the device's radioactive source) is only 300 nm to 5 nm thick (as an example). In one example, tritium is used as a fuel source. In other embodiments, radioisotopes (such as Nickel-63, promethium or phosphorus-33) may be used. Low energy beta sources, such as tritium, emit low energy beta-electrons that penetrate very shallow distances (as shallow as 5 nm) in semiconductors, including SiC, and can result in electron-hole pair creation near the surface of a semiconductor device rather than pair creation in a device's depletion region. By contrast, as a high energy electron penetrates a semiconductor device surface, such as a diode surface, it produces electron hole-pairs that can be collected at (by drift) and near (by diffusion) the depletion region of the device. This is a betavoltaic device, made of ultra-shallow junctions, which allows such penetration of emitted lower energy electrons, thus, reducing or eliminating losses through electron-hole pair recombination at the surface.
    • 这是一种新型的SiC催化剂装置(作为实例),其包括一个或多个“超浅”P + N-SiC结和柱状或平面的器件表面(作为示例)。 连接点被认为是“超浅”,因为薄接层(其接近器件的放射源)仅为300nm至5nm厚(作为示例)。 在一个实例中,使用氚作为燃料源。 在其它实施方案中,可以使用放射性同位素(例如,镍63,prom或磷-33)。 诸如氚的低能β源发射出半导体(包括SiC)中非常浅的距离(浅达5nm)的低能β-电子,并且可以在半导体器件的表面附近产生电子 - 空穴对,而不是 比设备耗尽区域中的配对创建。 相反,当高能电子穿透诸如二极管表面的半导体器件表面时,它产生电子空穴对,其可以在(通过漂移)和靠近(通过扩散)器件的耗尽区域收集。 这是一种由超浅结点制成的紫外线装置,其允许发射的较低能量电子的这种穿透,从而减少或消除在表面处的电子 - 空穴对复合的损耗。
    • 6. 发明申请
    • Betavoltaic cell
    • Betavoltaic细胞
    • US20070080605A1
    • 2007-04-12
    • US11509323
    • 2006-08-24
    • MVS ChandrashekharChristopher ThomasMichael Spencer
    • MVS ChandrashekharChristopher ThomasMichael Spencer
    • G21H1/00
    • G21H1/02
    • High aspect ratio micromachined structures in semiconductors are used to improve power density in Betavoltaic cells by providing large surface areas in a small volume. A radioactive beta-emitting material may be placed within gaps between the structures to provide fuel for a cell. The pillars may be formed of SiC. In one embodiment, SiC pillars are formed of n-type SiC. P type dopant, such as boron is obtained by annealing a borosilicate glass boron source formed on the SiC. The glass is then removed. In further embodiments, a dopant may be implanted, coated by glass, and then annealed. The doping results in shallow planar junctions in SiC.
    • 半导体中的高纵横比微加工结构用于通过在小体积中提供大的表面积来改善Betavoltaic细胞中的功率密度。 放射性β发射材料可以放置在结构之间的间隙内以为电池提供燃料。 支柱可以由SiC形成。 在一个实施例中,SiC柱由n型SiC形成。 通过对形成在SiC上的硼硅酸盐玻璃硼源进行退火,得到硼等P型掺杂剂。 然后取出玻璃。 在另外的实施方案中,掺杂剂可以被注入,用玻璃涂覆,然后退火。 掺杂导致SiC中的浅平面结。
    • 8. 发明授权
    • Betavoltaic battery with a shallow junction and a method for making same
    • 具有浅结的Betavoltaic电池及其制造方法
    • US08153453B2
    • 2012-04-10
    • US13195484
    • 2011-08-01
    • Michael SpencerMVS Chandrashekhar
    • Michael SpencerMVS Chandrashekhar
    • H01L21/00
    • H01L21/02625G21H1/02G21H1/06H01L21/02378H01L21/02529H01L21/02579
    • This is a novel SiC betavoltaic device (as an example) which comprises one or more “ultra shallow” P+N− SiC junctions and a pillared or planar device surface (as an example). Junctions are deemed “ultra shallow”, since the thin junction layer (which is proximal to the device's radioactive source) is only 300 nm to 5 nm thick (as an example). In one example, tritium is used as a fuel source. In other embodiments, radioisotopes (such as Nickel-63, promethium or phosphorus-33) may be used. Low energy beta sources, such as tritium, emit low energy beta-electrons that penetrate very shallow distances (as shallow as 5 nm) in semiconductors, including SiC, and can result in electron-hole pair creation near the surface of a semiconductor device rather than pair creation in a device's depletion region. By contrast, as a high energy electron penetrates a semiconductor device surface, such as a diode surface, it produces electron hole-pairs that can be collected at (by drift) and near (by diffusion) the depletion region of the device. This is a betavoltaic device, made of ultra-shallow junctions, which allows such penetration of emitted lower energy electrons, thus, reducing or eliminating losses through electron-hole pair recombination at the surface.
    • 这是一种新型的SiC催化剂装置(作为实例),其包括一个或多个“超浅”P + N-SiC结和柱状或平面的器件表面(作为示例)。 连接点被认为是“超浅”,因为薄接层(其接近器件的放射源)仅为300nm至5nm厚(作为示例)。 在一个实例中,使用氚作为燃料源。 在其它实施方案中,可以使用放射性同位素(例如,镍63,prom或磷-33)。 诸如氚的低能β源发射出半导体(包括SiC)中非常浅的距离(浅达5nm)的低能β-电子,并且可以在半导体器件的表面附近产生电子 - 空穴对,而不是 比设备耗尽区域中的配对创建。 相反,当高能电子穿透诸如二极管表面的半导体器件表面时,它产生电子空穴对,其可以在(通过漂移)和靠近(通过扩散)器件的耗尽区域收集。 这是一种由超浅结点制成的紫外线装置,其允许发射的较低能量电子的这种穿透,从而减少或消除在表面处的电子 - 空穴对复合的损耗。
    • 9. 发明申请
    • HIGH POWER DENSITY BETAVOLTAIC BATTERY
    • 高功率密度BETAVOLTAIC电池
    • US20110031572A1
    • 2011-02-10
    • US12851555
    • 2010-08-06
    • Michael SpencerMVS Chandrashekhar
    • Michael SpencerMVS Chandrashekhar
    • H01L29/66
    • G21H1/06H01L31/115
    • To increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area, rather than greater radioisotope material volume. An example of this invention is a high power density betavoltaic battery. In one example of this invention, tritium is used as a fuel source. In other examples, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond, and SiC. For example (for purposes of illustration/example, only), tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material. Other variations and examples are also discussed and given.
    • 为了增加贝塔伏设备中的总功率,希望具有更大的放射性同位素材料和/或半导体表面积,而不是更大的放射性同位素材料体积。 本发明的一个实例是高功率密度贝塔伏特电池。 在本发明的一个实例中,使用氚作为燃料源。 在其他实例中,可以使用放射性同位素,例如镍63,磷-33或prom。。 用于本发明的半导体可以包括但不限于Si,GaAs,GaP,GaN,金刚石和SiC。 例如(仅为了说明/示例的目的),将引用氚作为示例性燃料源,并且将参考SiC作为示例性半导体材料。 还讨论并给出了其他变型和实例。