会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Minimizing Interference Between Charging and Telemetry Coils in an Implantable Medical Device
    • 最小化植入式医疗设备中充电和遥测线圈之间的干扰
    • US20110112610A1
    • 2011-05-12
    • US12616178
    • 2009-11-11
    • Md. Mizanur RahmanKiran NimmagaddaJordi ParramonEmanuel Feldman
    • Md. Mizanur RahmanKiran NimmagaddaJordi ParramonEmanuel Feldman
    • A61N1/08A61N1/375
    • A61N1/37217A61N1/3718A61N1/37211A61N1/37229A61N1/3758A61N1/3787
    • An improved implantable pulse generator (IPG) containing improved telemetry circuitry is disclosed. The IPG includes charging and telemetry coils within the IPG case, which increases their mutual inductance and potential to interfere with each other; particularly problematic is interference to the telemetry coil caused by the charging coil. To combat this, improved telemetry circuitry includes decoupling circuitry for decoupling the charging coil during periods of telemetry between the IPG and an external controller. Such decoupling circuitry can comprise use of pre-existing LSK circuitry during telemetry, or new discrete circuitry dedicated to decoupling. The decoupling circuitry is designed to prevent or at least reduce induced current flowing through the charging coil during data telemetry. The decoupling circuitry can be controlled by the microcontroller in the IPG, or can automatically decouple the charging coil at appropriate times to mitigate an induced current without instruction from the microcontroller.
    • 公开了一种包含改进的遥测电路的改进的可植入脉冲发生器(IPG)。 IPG包括IPG案例中的充电和遥测线圈,增加了互感和相互干扰的潜力; 特别有问题的是由充电线圈引起的遥测线圈的干扰。 为了解决这个问题,改进的遥测电路包括去耦电路,用于在IPG和外部控制器之间的遥测期间解耦充电线圈。 这种去耦电路可以包括在遥测期间使用预先存在的LSK电路,或者专用于解耦的新的分立电路。 去耦电路设计为在数据遥测期间防止或至少减少流过充电线圈的感应电流。 去耦电路可以由IPG中的微控制器控制,或者可以在适当的时间自动地去耦合充电线圈,以减轻感应电流而不需要微控制器的指令。
    • 3. 发明授权
    • Selectable boost converter and charge pump for compliance voltage generation in an implantable stimulator device
    • 可选择的升压转换器和电荷泵,用于可植入刺激器装置中的顺应性电压产生
    • US09233254B2
    • 2016-01-12
    • US12372501
    • 2009-02-17
    • Kiran NimmagaddaMd. Mizanur RahmanJordi Parramon
    • Kiran NimmagaddaMd. Mizanur RahmanJordi Parramon
    • A61N1/378H02M3/07H02M3/156H02M1/00
    • A61N1/3782A61N1/37211A61N1/378H02M3/07H02M3/156H02M2001/009
    • Improved compliance voltage generation circuitry for a medical device is disclosed. The improved circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A telemetry enable signal indicating whether the implant's transmitter, receiver, or both, have been enabled is received. A “boost” signal from compliance voltage monitor-and-adjust logic circuitry is processed with the telemetry enable signal and its inverse to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern, while obtaining the advantage of higher power efficiency.
    • 公开了用于医​​疗装置的改进的顺应性电压产生电路。 一个实施例中的改进的电路包括升压转换器和电荷泵,其中任何一个能够从装置中的电池的电压产生适当的顺应性电压。 接收到指示植入物的发射器,接收器或两者是否被使能的遥测使能信号。 来自合规电压监控调节逻辑电路的“升压”信号通过遥测使能信号进行处理,其反相选择使能电荷泵或升压转换器:如果遥测使能信号无效,升压转换器 用于产生合规电压; 如果遥测使能信号有效,则使用电荷泵。 由于电荷泵电路不产生磁场,电荷泵不会干扰植入物和外部控制器之间的磁耦合遥测。 相比之下,在没有遥测的时期,升压转换器在磁干扰不受关注的同时获得了较高功率效率的优势,允许运行。
    • 5. 发明申请
    • Selectable Boost Converter and Charge Pump for Compliance Voltage Generation in an Implantable Stimulator Device
    • 可选择的升压转换器和电荷泵,用于在植入式刺激器装置中实现合规电压产生
    • US20100211132A1
    • 2010-08-19
    • US12372501
    • 2009-02-17
    • Kiran NimmagaddaMd. Mizanur RahmanJordi Parramon
    • Kiran NimmagaddaMd. Mizanur RahmanJordi Parramon
    • A61N1/08
    • A61N1/3782A61N1/37211A61N1/378H02M3/07H02M3/156H02M2001/009
    • Improved compliance voltage generation circuitry for a medical device is disclosed. The improved circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A telemetry enable signal indicating whether the implant's transmitter, receiver, or both, have been enabled is received. A “boost” signal from compliance voltage monitor-and-adjust logic circuitry is processed with the telemetry enable signal and its inverse to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern, while obtaining the advantage of higher power efficiency.
    • 公开了用于医​​疗装置的改进的顺应性电压产生电路。 一个实施例中的改进的电路包括升压转换器和电荷泵,其中任何一个能够从装置中的电池的电压产生适当的顺应性电压。 接收到指示植入物的发射器,接收器或两者是否被使能的遥测使能信号。 来自合规电压监控调节逻辑电路的“升压”信号通过遥测使能信号进行处理,其反相选择使能电荷泵或升压转换器:如果遥测使能信号无效,升压转换器 用于产生合规电压; 如果遥测使能信号有效,则使用电荷泵。 由于电荷泵电路不产生磁场,电荷泵不会干扰植入物和外部控制器之间的磁耦合遥测。 相比之下,在没有遥测的时期,升压转换器在磁干扰不受关注的同时获得了较高功率效率的优势,允许运行。
    • 6. 发明授权
    • Communication and charging circuitry for a single-coil implantable medical device
    • 用于单线圈可植入医疗设备的通信和充电电路
    • US08666504B2
    • 2014-03-04
    • US13608490
    • 2012-09-10
    • Vasily DronovJordi ParramonRobert OzawaMd. Mizanur RahmanEmanuel Feldman
    • Vasily DronovJordi ParramonRobert OzawaMd. Mizanur RahmanEmanuel Feldman
    • A61N1/05
    • H01F38/14A61N1/36A61N1/37223A61N1/3787H02J50/12H04Q9/12
    • Communication and charging circuitry for an implantable medical device is described having a single coil for receiving charging energy and for data telemetry. The circuitry removes from the AC side of the circuit a tuning capacitor and switch traditionally used to tune the tank circuitry to different frequencies for telemetry and charging. As such, the tank circuitry is simplified and contains no switchable components. A switch is serially connected to the storage capacitor on the DC side of the circuit. During telemetry, the switch is opened, thus disconnecting the storage capacitor from the tank circuit, and alleviating concerns that this capacitor will couple to the tank circuit and interfere with telemetry operations. During charging, the switch is closed, which allows the storage capacitor to couple to the tank circuitry through the rectifier during some portions of the tank circuitry's resonance.
    • 描述了用于可植入医疗装置的通信和充电电路,其具有用于接收充电能量和用于数据遥测的单个线圈。 该电路从电路的AC侧消除了调谐电容器和传统上用于将电路调谐到不同频率的开关,用于遥测和充电。 因此,容器电路被简化并且不包含可切换的部件。 开关串联连接到电路直流侧的存储电容器。 在遥测期间,开关打开,从而将存储电容器与储能电路断开,并减轻该电容器将耦合到储能电路并干扰遥测操作的担忧。 在充电期间,开关闭合,这允许存储电容器在储罐电路的共振的某些部分期间通过整流器耦合到储能电路。
    • 9. 发明授权
    • Multi-electrode implantable stimulator device with a single current path decoupling capacitor
    • 具有单电流路径去耦电容器的多电极可植入刺激装置
    • US07881803B2
    • 2011-02-01
    • US11550655
    • 2006-10-18
    • Jordi ParramonKiran NimmagaddaEmanuel FeldmanYuping He
    • Jordi ParramonKiran NimmagaddaEmanuel FeldmanYuping He
    • A61N1/40
    • A61N1/36125A61N1/025A61N1/08A61N1/372A61N1/37205A61N1/3756
    • Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device. Although of particular benefit when applied to microstimulators, the disclosed technique can be used with space-saving benefits in any stimulator device.
    • 本文公开了用于在经由至少一个阴极电极和至少一个阳极电极建立的电流路径中并入一个去耦电容器的多电极可植入刺激器装置的电路和方法。 在一个实施例中,去耦电容器可以硬连接到器件上的专用阳极。 阴极可以通过刺激开关选择性地激活。 在另一个实施例中,器件上的任何电极可以选择性地激活为阳极或阴极。 在该实施例中,去耦电容通过可选择的阳极和阴极刺激开关放置在电流路径中。 不管实施方案如何,这些技术允许电容去耦的优点,而不需要将去耦电容器与多电极器件上的每个电极相关联,这节省了器件体内的空间。 虽然在应用于微型激励器时特别有益,但是所公开的技术可以在任何刺激器装置中具有节省空间的优点。