会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Magnetoresistive effect sensor, thin-film magnetic head and thin-film wafer with the thin-film magnetic heads
    • 磁阻效应传感器,薄膜磁头和具有薄膜磁头的薄膜晶片
    • US06426853B1
    • 2002-07-30
    • US09440550
    • 1999-11-15
    • Masanori SakaiKen-ichi TakanoYuzuru Iwai
    • Masanori SakaiKen-ichi TakanoYuzuru Iwai
    • G11B539
    • B82Y25/00G01R33/093
    • An MR sensor, a thin-film magnetic head and a thin-film wafer with a plurality of the thin-film magnetic heads having a MR multi-layered structure including a non-magnetic material layer, first and second ferromagnetic material layers (free and pinned layers) separated by the non-magnetic material layer, and an anti-ferromagnetic material layer formed adjacent to and in physical contact with one surface of the pinned layer, the one surface being on an opposite side of the pinned layer from the non-magnetic material layer, the multi-layered structure having ends in a direction parallel to a magnetically sensitive surface or an ABS, and longitudinal bias layers formed at both the ends of the MR multi-layered structure, for providing a longitudinal magnetic bias to the MR multi-layered structure. The MR multi-layered structure is shaped such that a magnetization direction of the pinned layer is inclined at an angle from an axis of easy magnetization of the pinned layer.
    • 一种MR传感器,薄膜磁头和具有多个薄膜磁头的薄膜晶片,具有包括非磁性材料层的MR多层结构,第一和第二铁磁材料层(游离和 由非磁性材料层分离的被钉扎层,以及与钉扎层的一个表面相邻并物理接触形成的反铁磁材料层,该一个表面位于与非磁性材料层的钉扎层相反的一侧, 磁性材料层,具有平行于磁敏表面或ABS的方向的端部的多层结构以及形成在MR多层结构的两端的纵向偏压层,用于向MR提供纵向磁偏置 多层结构。 MR多层结构被成形为使得被钉扎层的磁化方向与被钉扎层的易磁化轴成一定角度倾斜。
    • 4. 发明授权
    • Magnetic disk unit with slider suspension assemblies and head IC chips
    • 具有滑块悬挂组件和磁头IC芯片的磁盘单元
    • US06333828B1
    • 2001-12-25
    • US09285697
    • 1999-04-05
    • Haruyuki MoritaMasanori SakaiKen-ichi Takano
    • Haruyuki MoritaMasanori SakaiKen-ichi Takano
    • G11B502
    • G11B5/012G11B5/4886G11B5/4976G11B33/121G11B33/14G11B2005/0013
    • A magnetic disk unit includes slider suspension assemblies, each of the assemblies having a slider with at least one magnetic head element and a suspension with one end portion and one surface, the slider being mounted on the one surface of the suspension at the one end portion, magnetic disks, each of the disks having at least one surface which opposes to the slider of the assembly, head IC chips electrically connected to the magnetic head elements, and a control circuit electrically connected with the head IC chips. The control circuit controls operations of each of the magnetic head elements so that the write current is applied to the magnetic head element for a first predetermined period of time and then the application of the write current to the magnetic head element is stopped for a second predetermined period of time which is equal to or longer than the first predetermined period.
    • 磁盘单元包括滑块悬架组件,每个组件具有带有至少一个磁头元件的滑块和具有一个端部和一个表面的悬架,滑块在一端部安装在悬架的一个表面上 ,磁盘,每个盘具有与组件的滑块相对的至少一个表面,与磁头元件电连接的头部IC芯片,以及与头部IC芯片电连接的控制电路。 控制电路控制每个磁头元件的操作,使得写入电流在第一预定时间段内施加到磁头元件,然后停止对磁头元件的写入电流的施加第二预定的 时间段等于或长于第一预定时段。
    • 8. 发明授权
    • Thin film magnetic head having a nonmagnetic conductive layer and method of manufacturing same
    • 具有非磁性导电层的薄膜磁头及其制造方法
    • US06469868B2
    • 2002-10-22
    • US09388936
    • 1999-09-02
    • Takahiro YamamotoNoboru YamanakaKen-ichi Takano
    • Takahiro YamamotoNoboru YamanakaKen-ichi Takano
    • G11B531
    • G11B5/313G11B5/3143G11B5/3967
    • It is an object of the invention to improve characteristics of a thin-film magnetic head in the case where the frequency of data to write is high, in particular. In a thin-film magnetic head of the invention a nonmagnetic conductive member is provided to face at least part of a top pole layer of an induction-type magnetic transducer. Consequently, eddy currents are induced inside the nonmagnetic conductive member by a write current. The eddy currents suppress a magnetic field leaking from magnetic layers. In addition, the nonmagnetic conductive member is in contact with the top pole layer. Therefore, eddy currents generated inside the top pole layer are fed to the nonmagnetic conductive member, too. As a result, it is possible to prevent reductions in characteristics such as: a reduction in intensity of a write magnetic field due to eddy currents; an increase in delay between a write current and generation of a write magnetic field; and a decrease in gradient of rise of a write magnetic field with respect to time.
    • 特别是在要写入数据的频率高的情况下,本发明的目的是改进薄膜磁头的特性。 在本发明的薄膜磁头中,提供非磁性导电构件以面对感应型磁换能器的顶极层的至少一部分。 因此,通过写入电流在非磁性导电部件内部产生涡电流。 涡流抑制从磁性层泄漏的磁场。 此外,非磁性导电构件与顶极层接触。 因此,在顶极层内产生的涡电流也被馈送到非磁性导电部件。 结果,可以防止特性的降低,例如:由于涡流引起的写入磁场强度的降低; 写入电流和写入磁场的产生之间的延迟增加; 以及写入磁场相对于时间的上升的梯度的减小。
    • 9. 发明授权
    • Magnetoresistive effect sensor, thin-film magnetic head with the sensor and manufacturing method of the thin-film magnetic head
    • 磁阻效应传感器,具有传感器的薄膜磁头和薄膜磁头的制造方法
    • US06270588B1
    • 2001-08-07
    • US09272615
    • 1999-03-19
    • Ken-ichi TakanoMasato TakahashiNobuya Oyama
    • Ken-ichi TakanoMasato TakahashiNobuya Oyama
    • H01F1032
    • B82Y25/00B82Y10/00G01R33/09G11B5/3903G11B2005/3996H01F10/3268Y10T29/49034
    • A thin-film magnetic head having a spin valve effect multi-layered structure including a non-magnetic electrically conductive material layer, first and second ferromagnetic material layers separated by the non-magnetic electrically conductive material layer, and an anti-ferromagnetic material layer formed adjacent to and in physical contact with one surface of the second ferromagnetic material layer. This one surface is an opposite side from the non-magnetic electrically conductive material layer and the multi-layered structure has ends at its track-width direction. The head also has longitudinal bias means formed at both the track-width ends of the multi-layered structure, for providing a longitudinal magnetic bias to the multi-layered structure. The multi-layered structure and the longitudinal bias means are formed such that an angle between a direction of exchange coupling magnetic bias in the second ferromagnetic material layer produced by the exchange coupling with the anti-ferromagnetic material layer and a direction of the longitudinal magnetic bias in the second ferromagnetic material layer is more than 90° in at least part of the second ferromagnetic material layer.
    • 具有自旋阀效应的多层结构的薄膜磁头,包括非磁性导电材料层,由非磁性导电材料层分隔开的第一和第二铁磁材料层以及形成的反铁磁材料层 与第二铁磁材料层的一个表面相邻并物理接触。 该一个表面是与非磁性导电材料层相反的一侧,并且多层结构在其轨道宽度方向上结束。 头部还具有形成在多层结构的轨道宽度端处的纵向偏置装置,用于向多层结构提供纵向磁偏置。 多层结构和纵向偏置装置形成为使得通过与反铁磁材料层的交换耦合产生的第二铁磁材料层中的磁偏压的耦合方向和纵向磁偏压的方向之间的角度 在第二铁磁材料层中的第二铁磁材料层的至少一部分中大于90°。
    • 10. 发明授权
    • Method for measurement of magnetic field gradient of recording magnetic field generated by magnetic head
    • 测量由磁头产生的记录磁场的磁场梯度的方法
    • US08619510B1
    • 2013-12-31
    • US13600326
    • 2012-08-31
    • Ken-ichi TakanoSatoshi TomikawaTomohito MizunoHiroshi Kiyono
    • Ken-ichi TakanoSatoshi TomikawaTomohito MizunoHiroshi Kiyono
    • G11B11/00
    • G11B5/455G11B5/02G11B2005/0021
    • A measurement method of a magnetic field gradient of a recording magnetic field generated by a magnetic head in a recording medium includes a step of locally heating the recording medium in a nonmagnetic field state where a magnetic field is not applied to the recording medium at all and measuring a temperature gradient of the recording medium in the nonmagnetic field state, a step of locally heating the recording medium in a recording magnetic field application state where the recording magnetic field is applied to the recording medium and measuring a temperature gradient of the recording medium in the recording magnetic field application state, and a step of calculating a magnetic field gradient of the recording magnetic field based on the temperature gradient of the recording medium in the nonmagnetic field state and the temperature gradient of the recording medium in the recording magnetic field application state.
    • 在记录介质中由磁头产生的记录磁场的磁场梯度的测量方法包括:在完全没有向记录介质施加磁场的非磁场状态下局部地加热记录介质的步骤,以及 测量记录介质在非磁场状态下的温度梯度;在记录磁场施加状态下对记录介质进行局部加热的步骤,其中记录磁场被施加到记录介质上并测量记录介质的温度梯度 记录磁场施加状态,以及基于非磁场状态下的记录介质的温度梯度和记录磁场施加状态下记录介质的温度梯度来计算记录磁场的磁场梯度的步骤 。