会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Strained channel field effect transistor and the method for fabricating the same
    • 应变通道场效应晶体管及其制造方法
    • US08673722B2
    • 2014-03-18
    • US13255443
    • 2011-03-23
    • Ru HuangQuanxin YunXia AnYujie AlXing Zhang
    • Ru HuangQuanxin YunXia AnYujie AlXing Zhang
    • H01L21/336
    • H01L29/0653H01L29/1083H01L29/66545H01L29/66636H01L29/7833H01L29/7834H01L29/7848H01L29/7849
    • The present invention discloses a strained channel field effect transistor and a method for fabricating the same. The field effect transistor comprises a substrate, a source/drain, a gate dielectric layer, and a gate, characterized in that, an “L” shaped composite isolation layer, which envelops a part of a side face of the source/drain adjacent to a channel and the bottom of the source/drain, is arranged between the source/drain and the substrate; the composite isolation layer is divided into two layers, that is, an “L” shaped insulation thin layer contacting directly with the substrate and an “L” shaped high stress layer contacting directly with the source and the drain. The field effect transistor of such a structure improves the mobility of charge carriers by introducing stress into the channel by means of the high stress layer, while fundamentally improving the device structure of the field effect transistor and improving the short channel effect suppressing ability of the device.
    • 本发明公开了一种应变通道场效应晶体管及其制造方法。 场效应晶体管包括衬底,源极/漏极,栅极电介质层和栅极,其特征在于,“L”形复合隔离层,其包围与源极/漏极相邻的侧面的一部分 沟道和源极/漏极的底部布置在源极/漏极和衬底之间; 复合隔离层分为两层,即与基板直接接触的“L”形绝缘薄层和与源极和漏极直接接触的“L”形高应力层。 这种结构的场效应晶体管通过高应力层向沟道中引入应力而提高了载流子的迁移率,同时从根本上改善了场效应晶体管的器件结构,提高了器件的短沟道效应抑制能力 。
    • 4. 发明申请
    • CMOS Device for Reducing Charge Sharing Effect and Fabrication Method Thereof
    • 用于降低电荷共享效应的CMOS器件及其制造方法
    • US20130161757A1
    • 2013-06-27
    • US13582034
    • 2012-04-16
    • Ru HuangFei TanXia AnQianqian HuangDong YangXing Zhang
    • Ru HuangFei TanXia AnQianqian HuangDong YangXing Zhang
    • H01L27/092H01L21/8238
    • H01L21/02203H01L21/02216H01L21/3063H01L21/823878H01L27/0921
    • The present invention discloses a CMOS device of reducing charge sharing effect and a fabrication method thereof. The present invention has an additional isolation for trapping carriers disposed right below an isolation region. the material of the additional isolation region is porous silicon. Since porous silicon is a functional material of spongy structure by electrochemistry anodic oxidizing monocrystalline silicon wafer, there are a large number of microvoids and dangling bonds on the surface layer of the porous silicon. These defects may form defect states in a center of forbidden band of the porous silicon, the defect states may trap carriers so as to cause an increased resistance. And with an increase of density of corrosion current, porosity increases, and defects in the porous silicon increase. The present invention can reduce the charge sharing effect due to heavy ions by using a feature that the defect states in the porous silicon trap carriers, the formation of a shallow trench isolation (STI) region and a isolation region underneath only needs one time photolithography, and the process is simple, so that radioresistance performance of an integrated circuit may be greatly increased.
    • 本发明公开了一种降低电荷共享效应的CMOS器件及其制造方法。 本发明对于设置在隔离区域正下方的捕获载体具有额外的隔离。 附加隔离区的材料是多孔硅。 由于多孔硅是通过电化学阳极氧化单晶硅晶片的海绵结构的功能材料,因此在多孔硅的表面层上存在大量微孔和悬挂键。 这些缺陷可能在多孔硅的禁带的中心形成缺陷状态,缺陷状态可能会捕获载体以引起增加的电阻。 随着腐蚀电流密度的增加,孔隙率增加,多孔硅中的缺陷增加。 本发明可以通过使用多孔硅捕集载体中的缺陷状态,浅沟槽隔离(STI)区域的形成和下面的隔离区域仅需要一次光刻来降低由于重离子引起的电荷共享效应, 并且该工艺简单,从而可以大大提高集成电路的射电阻性能。
    • 7. 发明授权
    • Ge-based NMOS device and method for fabricating the same
    • Ge基NMOS器件及其制造方法
    • US08865543B2
    • 2014-10-21
    • US13580971
    • 2012-02-21
    • Ru HuangZhiqiang LiXia AnYue GuoXing Zhang
    • Ru HuangZhiqiang LiXia AnYue GuoXing Zhang
    • H01L21/8242H01L29/78H01L29/66H01L29/51
    • H01L29/66477H01L29/0895H01L29/16H01L29/41783H01L29/517H01L29/66643H01L29/78
    • The embodiments of the present invention provide a Ge-based NMOS device structure and a method for fabricating the same. By using the method, double dielectric layers of germanium oxide (GeO2) and metal oxide are deposited between the source/drain region and the substrate. The present invention not only reduces the electron Schottky barrier height of metal/Ge contact, but also improves the current switching ratio of the Ge-based Schottky and therefore, it will improve the performance of the Ge-based Schottky NMOS transistor. In addition, the fabrication process is very easy and completely compatible with the silicon CMOS process. As compared with conventional fabrication method, the Ge-based NMOS device structure and the fabrication method in the present invention can easily and effectively improve the performance of the Ge-based Schottky NMOS transistor.
    • 本发明的实施例提供了一种基于Ge的NMOS器件结构及其制造方法。 通过使用该方法,在源极/漏极区域和衬底之间沉积氧化锗(GeO 2)和金属氧化物的双电介质层。 本发明不仅降低了金属/ Ge接触的电子肖特基势垒高度,而且提高了基于Ge的肖特基的电流切换比,从而提高了Ge基肖特基NMOS晶体管的性能。 此外,制造工艺非常容易和完全兼容硅CMOS工艺。 与传统的制造方法相比,本发明中的Ge基NMOS器件结构和制造方法可以容易且有效地改善Ge基肖特基NMOS晶体管的性能。
    • 9. 发明授权
    • Interface treatment method for germanium-based device
    • 锗基装置的界面处理方法
    • US08632691B2
    • 2014-01-21
    • US13702562
    • 2012-06-14
    • Ru HuangMin LiXia AnMing LiMeng LinXing Zhang
    • Ru HuangMin LiXia AnMing LiMeng LinXing Zhang
    • B44C1/22C03C15/00C03C25/68C23F1/00C25F3/00
    • H01L21/02052H01L21/306
    • Disclosed herein is an interface treatment method for germanium-based device, which belongs to the field of manufacturing technologies of ultra large scaled integrated (ULSI) circuits. In the method, the natural oxide layer on the surface of the germanium-based substrate is removed by using a concentrated hydrochloric acid solution having a mass percentage concentration of 15%˜36%, and dangling bonds of the surface are performed a passivation treatment by using a diluted hydrochloric acid solution having a mass percentage concentration of 5%˜10% so as to form a stable passivation layer on the surface. This method makes a good foundation for depositing a high-K (high dielectric constant) gate dielectric on the surface of the germanium-based substrate after cleaning and passivating, enhances quality of the interface between the gate dielectric and the substrate, and improves the electrical performance of germanium-based MOS device.
    • 本文公开了一种锗系器件的接口处理方法,属于超大规模集成(ULSI)电路制造技术领域。 在该方法中,通过使用质量百分比浓度为15%〜36%的浓盐酸溶液除去锗系基板表面上的天然氧化物层,并且通过使表面的悬空键进行钝化处理 使用质量百分比浓度为5%〜10%的稀盐酸溶液,以在表面上形成稳定的钝化层。 该方法为清洗和钝化后在锗基基板表面上沉积高K(高介电常数)栅极电介质提供了良好的基础,提高了栅极电介质和基板之间界面的质量,改善了电气 锗系MOS器件的性能。
    • 10. 发明申请
    • Method for Predicting Reliable Lifetime of SOI Mosfet Device
    • 用于预测SOI Mosfet器件可靠寿命的方法
    • US20130103351A1
    • 2013-04-25
    • US13504433
    • 2011-11-30
    • Ru HuangDong YangXia AnXing Zhang
    • Ru HuangDong YangXia AnXing Zhang
    • G01R31/26G06F19/00
    • G01R31/287
    • Disclosed herein is a method for predicting a reliable lifetime of a SOI MOSFET device. The method comprises: measuring a relationship of a gate resistance of the SOI MOSFET device varying as a function of a temperature at different wafer temperatures; performing a lifetime accelerating test on the SOI MOSFET device at different wafer temperatures, so as to obtain a degenerating relationship of a parameter representing the lifetime of the device as a function of stress time, and obtain a lifetime in the presence of self-heating when the parameter degenerates to 10%; performing a self-heating correction on the measured lifetime of the device by using the measured self-heating temperature and an Arrhenius model, so as to obtain a lifetime without self-heating influence; performing a self-heating correction on a variation of the drain current caused by self-heating; performing a self-heating correction on an impact ionization rate caused by hot carriers; and predicting the lifetime of the SOI MOSFET device under a bias. The embodiment of the invention prevents the self-heating effect from affecting the SOI MOSFET device in a practical logic circuit or in an AC analog circuit, which leads to a more precise prediction result.
    • 这里公开了一种用于预测SOI MOSFET器件的可靠寿命的方法。 该方法包括:测量SOI MOSFET器件的栅极电阻与不同晶片温度下温度变化的关系; 在不同晶片温度下对SOI MOSFET器件进行寿命加速测试,以获得表示器件寿命作为应力时间的函数的退化关系,并在存在自热的情况下获得寿命 参数退化为10%; 通过使用测量的自热温度和Arrhenius模型对器件的测量寿命进行自加热校正,以获得没有自热影响的寿命; 对由自加热引起的漏极电流的变化进行自热校正; 对热载体产生的冲击电离率进行自热校正; 并且在偏压下预测SOI MOSFET器件的寿命。 本发明的实施例防止了自发热效应影响实际逻辑电路或AC模拟电路中的SOI MOSFET器件,这导致更精确的预测结果。