会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Optical proximity correction using progressively smoothed mask shapes
    • 使用逐渐平滑的掩模形状的光学邻近校正
    • US07343582B2
    • 2008-03-11
    • US11138172
    • 2005-05-26
    • Maharaj MukherjeeScott M. MansfieldAlan E. RosenbluthKafai Lai
    • Maharaj MukherjeeScott M. MansfieldAlan E. RosenbluthKafai Lai
    • G06F17/50
    • G06F17/5068G03F1/36G03F7/70441G06F2217/12Y02P90/265
    • A method, program product and system is disclosed for performing optical proximity correction (OPC) wherein mask shapes are fragmented based on the effective image processing influence of neighboring shapes on the shape to be fragmented. Neighboring shapes are smoothed prior to determining their influence on the fragmentation of the shape of interest, where the amount of smoothing of a neighboring shape increases as the influence of the neighboring shape on the image process of the shape of interest decreases. A preferred embodiment includes the use of multiple regions of interactions (ROIs) around the shape of interest, and assigning a smoothing parameter to a given ROI that increases as the influence of shapes in that ROI decreases with respect to the shape to be fragmented. The invention provides for accurate OPC that is also efficient.
    • 公开了一种用于执行光学邻近校正(OPC)的方法,程序产品和系统,其中基于相邻形状对要分段的形状的有效图像处理影响,掩模形状被分段。 相邻形状在确定其对感兴趣的形状的碎片的影响之前被平滑,其中相邻形状的平滑化量随着相关形状对感兴趣形状的图像处理的影响而增加。 优选实施例包括使用感兴趣的形状周围的多个交互区域(ROI),以及为给定的ROI分配平滑参数,随着该ROI中的形状的影响相对于待分割的形状而减小。 本发明提供了也是有效的精确OPC。
    • 5. 发明申请
    • PRINTABILITY VERIFICATION BY PROGRESSIVE MODELING ACCURACY
    • 可靠性验证通过逐步建模精度
    • US20080127027A1
    • 2008-05-29
    • US11555854
    • 2006-11-02
    • Gregg M. GallatinKafai LaiMaharaj MukherjeeAlan E. Rosenbluth
    • Gregg M. GallatinKafai LaiMaharaj MukherjeeAlan E. Rosenbluth
    • G06F17/50
    • G03F1/36
    • A fast method of verifying a lithographic mask design is provided wherein catastrophic errors are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models, including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side-lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.
    • 提供了一种验证光刻掩模设计的快速方法,其中通过使用逐渐更精确的图像模型(包括光学和抗蚀剂模型)迭代地模拟和验证用于掩模布局的图像来识别灾难性错误。 逐步准确的光学模型包括提供连续影响较小的SOCS内核。 构造相应的抗蚀剂模型,其可以仅包括对应于光学模型的SOCS核项,或者可以包括不同影响范围的图像特征项。 优选用亮场模拟来识别与过多光线相关的错误,例如桥接,旁瓣或SRAF打印错误,而与光线不足相关的错误,例如颈缩或线端缩短覆盖误差,优选地用暗场 模拟。
    • 8. 发明授权
    • Printability verification by progressive modeling accuracy
    • 可打印性验证通过逐步建模精度
    • US07512927B2
    • 2009-03-31
    • US11555854
    • 2006-11-02
    • Gregg M. GallatinKafai LaiMaharaj MukherjeeAlan E. Rosenbluth
    • Gregg M. GallatinKafai LaiMaharaj MukherjeeAlan E. Rosenbluth
    • G06F17/50
    • G03F1/36
    • A fast method of verifying a lithographic mask design is provided wherein catastrophic errors are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models, including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side-lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.
    • 提供了一种验证光刻掩模设计的快速方法,其中通过使用逐渐更精确的图像模型(包括光学和抗蚀剂模型)迭代地模拟和验证用于掩模布局的图像来识别灾难性错误。 逐步准确的光学模型包括提供连续影响较小的SOCS内核。 构造相应的抗蚀剂模型,其可以仅包括对应于光学模型的SOCS核项,或者可以包括不同影响范围的图像特征项。 优选用亮场模拟来识别与过多光线相关的错误,例如桥接,旁瓣或SRAF打印错误,而与光线不足相关的错误,例如颈缩或线端缩短覆盖误差,优选地用暗场 模拟。