会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Coherence factor adaptive ultrasound imaging
    • 相干因子自适应超声成像
    • US20060173313A1
    • 2006-08-03
    • US11046347
    • 2005-01-27
    • D-L LiuLewis ThomasKutay UstunerCharles BradleyJohn Lazenby
    • D-L LiuLewis ThomasKutay UstunerCharles BradleyJohn Lazenby
    • A61B8/00
    • G01S7/52046G01S15/8993
    • A set of N×M signals are acquired from an object, where N is the number of array elements and M corresponds to variations in data acquisition and/or processing parameters. The parameters include transmit aperture functions, transmit waveforms, receive aperture functions, and receive filtering functions in space and/or time. A coherence factor is computed as a ratio of the energy of the coherent sum to the energy of the at-least-partially incoherent sum of channel or image signals acquired with at least one different parameter. Partial beamformed data may be used for channel coherence calculation. For image domain coherence, a component image is formed for each different transmit beam or receive aperture function, and a coherence factor image is computed using the set of component images. The coherence factor image is displayed or used to modify or blend other images formed of the same region.
    • 从对象获取一组NxM信号,其中N是数组元素的数量,M对应于数据采集和/或处理参数中的变化。 这些参数包括发射孔径功能,发射波形,接收孔径功能,以及在空间和/或时间中接收滤波功能。 相干因子被计算为用至少一个不同参数获取的信道或图像信号的至少部分非相干和的相干和的能量与能量的比率。 部分波束形成数据可用于通道相干计算。 对于图像域相干性,为每个不同的发射波束或接收孔径函数形成分量图像,并且使用该组分量图像来计算相干因子图像。 相干因子图像被显示或用于修改或混合由相同区域形成的其他图像。
    • 2. 发明申请
    • Aberration correction with broad transmit beams in medical ultrasound
    • 医学超声波中广泛发射光束的畸变校正
    • US20060241429A1
    • 2006-10-26
    • US11099802
    • 2005-04-05
    • Kutay UstunerLewis ThomasD-L Liu
    • Kutay UstunerLewis ThomasD-L Liu
    • A61B8/00
    • G01S7/52049G01S7/52046G01S7/52085G01S7/5209G01S15/8915G01S15/8925G01S15/8959G01S15/8993G01S15/8997G10K11/346
    • Aberration estimation uses cross correlation of receive-focused transmit element data. A set of sequentially fired broad transmit beams insonify an object from different steering angles. Each transmit beam emanates from an actual or a virtual transmit element. For every firing, a receive beamformer forms a transmit element image of the insonified region by focusing the received signals. An estimator estimates aberration by cross correlating or comparing the transmit element images. Where a virtual transmit element is used, the virtual transmit element images are back propagated to an actual transmit element position before aberration estimation. The estimations are used to form corrected transmit element images which are then summed pre-detection to form a high-resolution synthetic transmit aperture. Alternatively, the estimations are used to improve conventional focused-transmit imaging.
    • 畸变估计使用接收发射单元数据的互相关。 一组顺序发射的宽发射光束使不同转向角的物体失真。 每个发射波束从实际或虚拟发射元件发出。 对于每次触发,接收波束形成器通过聚焦接收到的信号来形成声音区域的发射元件图像。 估计器通过交叉相关或比较发射元件图像来估计像差。 在使用虚拟发射元件的情况下,虚拟发射元件图像在像差估计之前被反向传播到实际发射元件位置。 这些估计用于形成经校正的发射元素图像,然后将它们相加预检测以形成高分辨率合成发射孔径。 或者,估计用于改进传统的聚焦传输成像。
    • 4. 发明申请
    • Coherence factor adaptive ultrasound imaging methods and systems
    • 相干因子自适应超声成像方法和系统
    • US20050228279A1
    • 2005-10-13
    • US10814959
    • 2004-03-31
    • Kutay UstunerPai-Chi LiMeng-Lin LiLewis ThomasAlbert Gee
    • Kutay UstunerPai-Chi LiMeng-Lin LiLewis ThomasAlbert Gee
    • A61B8/14G01S7/52
    • G01S15/8927G01S7/52049
    • Ultrasound imaging adapts as a function of a coherence factor. Various beamforming, image forming or image processing parameters are varied as a function of a coherence factor to improve detail resolution, contrast resolution, dynamic range or SNR. For example, a beamforming parameter such as the transmit or receive aperture size, apodization type or delay is selected to provide maximum coherence. Alternatively or additionally, an image forming parameter, such as the number of beams for coherent synthesis or incoherent compounding, is set as a function of the coherence factor. Alternatively or additionally an image processing parameter such as the dynamic range, linear or nonlinear video filter and/or linear or nonlinear map may also adapt as a function of the coherence factor.
    • 超声成像适应相干因子的函数。 各种波束成形,图像形成或图像处理参数作为相干因子的函数而变化,以提高细节分辨率,对比度分辨率,动态范围或SNR。 例如,选择诸如发射或接收孔径大小,变迹类型或延迟的波束形成参数以提供最大相干性。 或者或另外,将诸如用于相干合成或非相干复合的光束的数量的图像形成参数设置为相干因子的函数。 替代地或附加地,诸如动态范围,线性或非线性视频滤波器和/或线性或非线性映射的图像处理参数也可以作为相干因子的函数来适应。
    • 6. 发明申请
    • Surface parameter adaptive ultrasound image processing
    • 表面参数自适应超声图像处理
    • US20070014446A1
    • 2007-01-18
    • US11157412
    • 2005-06-20
    • Thilaka SumanaweeraKutay Ustuner
    • Thilaka SumanaweeraKutay Ustuner
    • G06K9/00
    • G06T15/50G06T15/08G06T15/40
    • The depth buffer of a GPU is used to derive a surface normal or other surface parameter, avoiding or limiting computation of spatial gradients in 3D data sets and extra loading of data into the GPU. The surface parameter is used: to add shading with lighting to volume renderings of ultrasound data in real time, to angle correct velocity estimates, to adapt filtering or to correct for insonifying-angle dependent gain and compression. For border detection and segmentation, intersections with a volume oriented as a function of target structure, such as cylinders oriented relative to a vessel, are used for rendering. The intersections identify data for loading into the frame buffer for rendering.
    • GPU的深度缓冲器用于导出表面法线或其他表面参数,避免或限制3D数据集中的空间梯度的计算以及将数据额外加载到GPU中。 使用表面参数:通过照明将阴影添加到实时超声数据的体积渲染中,对角度正确的速度估计,适应滤波或校正失真角依赖增益和压缩。 对于边界检测和分割,使用与目标结构相关的体积定向的交点,例如相对于血管定向的圆柱体,用于渲染。 交叉点识别用于加载到帧缓冲器中的数据用于呈现。
    • 7. 发明申请
    • Viewing direction dependent acquisition or processing for 3D ultrasound imaging
    • 观察与3D超声成像方向相关的获取或处理
    • US20050093859A1
    • 2005-05-05
    • US10701910
    • 2003-11-04
    • Thilaka SumanaweeraKutay Ustuner
    • Thilaka SumanaweeraKutay Ustuner
    • A61B8/14G01S15/89G02B27/22G03B42/06G06T15/08G06T15/00
    • G06T15/08A61B8/483G01S15/8993
    • To improve real time 3D imaging performance, acquisition, beamforming, coherent image forming and/or image processing parameters are varied as a function of the viewing direction selected by the user. For example, the scan planes are oriented relative to the viewing direction. As a result rapid 3D rendering is provided without complex additional data interpolation or other 3D rendering processes. In another example, data along the lateral axis that is perpendicular to the viewing direction (i.e., display lateral axis) is acquired with parameters adapted to maximize field of view, detail and contrast resolution, while data along the lateral axis that is parallel to the viewing direction is acquired with compromised field of view, detail or contrast resolution. As a result, a high volume rate 3D imaging is achieved with 2D-equivalent detail resolution, contrast resolution and field of view along the display lateral axis.
    • 为了提高实时3D成像性能,采集,波束赋形,相干图像形成和/或图像处理参数根据用户选择的观看方向而变化。 例如,扫描平面相对于观察方向定向。 因此,提供快速3D渲染,而无需复杂的附加数据插值或其他3D渲染过程。 在另一示例中,采用适于最大化视场,细节和对比度分辨率的参数来获取横向轴线垂直于观察方向的数据(即,显示横向轴线),而沿着横向轴线的平行于 观察方向是以受损的视野,细节或对比度分辨率获得的。 结果,利用2D等效的细节分辨率,对比度分辨率和沿着显示器横向轴的视场来实现高体积率3D成像。
    • 8. 发明授权
    • Medical ultrasound imaging system with composite delay profile
    • 医学超声成像系统具有复合延迟特征
    • US06312386B1
    • 2001-11-06
    • US09253088
    • 1999-02-19
    • Mirsaid BolorforoshChing-Hua ChouAlbert GeeSungrung HuangKutay Ustuner
    • Mirsaid BolorforoshChing-Hua ChouAlbert GeeSungrung HuangKutay Ustuner
    • A61B800
    • G10K11/346
    • A medical ultrasound diagnostic imaging system includes a delay system that applies a composite delay profile to signals to or from respective transducer elements. One composite delay profile includes a first, substantially point-focus delay profile for a first set of the transducer elements and a second, substantially point-focus delay profile for a second set of the transducer elements. The first and second delay profiles cause ultrasonic energy from the respective first and second sets of the transducer elements to constructively add at first and second respective spaced focal zones in either transmit or receive. Another composite delay profile includes first and second portions that substantially correspond to respective parts of a point-focus delay profile, and third and fourth portions that are intermediate the point-focus delay profile and respective tangents.
    • 医疗超声诊断成像系统包括延迟系统,该延迟系统将复合延迟分布应用于来自相应换能器元件的信号。 一个复合延迟分布包括用于第一组换能器元件的第一基本点聚焦延迟分布和用于第二组换能器元件的第二基本点聚焦延迟分布。 第一和第二延迟分布引起来自相应的第一组和第二组换能器元件的超声波能量以在发射或接收中的第一和第二相应间隔的聚焦区建设性地增加。 另一个复合延迟分布包括基本对应于点聚焦延迟分布的各个部分的第一和第二部分以及位于点聚焦延迟分布和相应切线之间的第三和第四部分。
    • 9. 发明申请
    • Transmit multibeam for compounding ultrasound data
    • 发送复合超声数据的多波束
    • US20060241454A1
    • 2006-10-26
    • US11099866
    • 2005-04-05
    • Kutay UstunerAnming CaiCharles Bradley
    • Kutay UstunerAnming CaiCharles Bradley
    • A61B8/00
    • G01S15/8995A61B8/00A61B8/4483G01S7/5209G01S7/52092G01S7/52095
    • Transmit multibeams insonify an object with multiple noncollinear transmit beams fired substantially simultaneously. The noncollinear beams are along different scan lines of same scan geometry, or they belong to scan lines of different scan geometries. One or more receive beams are formed in parallel in response to each of the noncollinear beams. The scan geometry and/or center frequency is varied between the noncollinear transmit beams of a transmit event. By scanning the transmit multibeam, and varying the scan geometry and/or frequency between the noncollinear transmit beams of a transmit event, multiple component images are generated for compounding. The component images are scan-converted (if scan geometries are different), weighted and combined after envelope detection.
    • 发射多波束使多个基本同时发射的非共线发射波束对象物体失真。 非共线光束沿相同扫描几何的不同扫描线,或者它们属于不同扫描几何形状的扫描线。 一个或多个接收波束响应于每个非共线波束平行地形成。 扫描几何和/或中心频率在发射事件的非共线发射波束之间变化。 通过扫描发射多波束,并改变发射事件的非共线发射波束之间的扫描几何形状和/或频率,生成多个分量图像进行复合。 组件图像进行扫描转换(如果扫描几何不同),在包络检测后加权和组合。