会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Surface parameter adaptive ultrasound image processing
    • 表面参数自适应超声图像处理
    • US20070014446A1
    • 2007-01-18
    • US11157412
    • 2005-06-20
    • Thilaka SumanaweeraKutay Ustuner
    • Thilaka SumanaweeraKutay Ustuner
    • G06K9/00
    • G06T15/50G06T15/08G06T15/40
    • The depth buffer of a GPU is used to derive a surface normal or other surface parameter, avoiding or limiting computation of spatial gradients in 3D data sets and extra loading of data into the GPU. The surface parameter is used: to add shading with lighting to volume renderings of ultrasound data in real time, to angle correct velocity estimates, to adapt filtering or to correct for insonifying-angle dependent gain and compression. For border detection and segmentation, intersections with a volume oriented as a function of target structure, such as cylinders oriented relative to a vessel, are used for rendering. The intersections identify data for loading into the frame buffer for rendering.
    • GPU的深度缓冲器用于导出表面法线或其他表面参数,避免或限制3D数据集中的空间梯度的计算以及将数据额外加载到GPU中。 使用表面参数:通过照明将阴影添加到实时超声数据的体积渲染中,对角度正确的速度估计,适应滤波或校正失真角依赖增益和压缩。 对于边界检测和分割,使用与目标结构相关的体积定向的交点,例如相对于血管定向的圆柱体,用于渲染。 交叉点识别用于加载到帧缓冲器中的数据用于呈现。
    • 3. 发明申请
    • Viewing direction dependent acquisition or processing for 3D ultrasound imaging
    • 观察与3D超声成像方向相关的获取或处理
    • US20050093859A1
    • 2005-05-05
    • US10701910
    • 2003-11-04
    • Thilaka SumanaweeraKutay Ustuner
    • Thilaka SumanaweeraKutay Ustuner
    • A61B8/14G01S15/89G02B27/22G03B42/06G06T15/08G06T15/00
    • G06T15/08A61B8/483G01S15/8993
    • To improve real time 3D imaging performance, acquisition, beamforming, coherent image forming and/or image processing parameters are varied as a function of the viewing direction selected by the user. For example, the scan planes are oriented relative to the viewing direction. As a result rapid 3D rendering is provided without complex additional data interpolation or other 3D rendering processes. In another example, data along the lateral axis that is perpendicular to the viewing direction (i.e., display lateral axis) is acquired with parameters adapted to maximize field of view, detail and contrast resolution, while data along the lateral axis that is parallel to the viewing direction is acquired with compromised field of view, detail or contrast resolution. As a result, a high volume rate 3D imaging is achieved with 2D-equivalent detail resolution, contrast resolution and field of view along the display lateral axis.
    • 为了提高实时3D成像性能,采集,波束赋形,相干图像形成和/或图像处理参数根据用户选择的观看方向而变化。 例如,扫描平面相对于观察方向定向。 因此,提供快速3D渲染,而无需复杂的附加数据插值或其他3D渲染过程。 在另一示例中,采用适于最大化视场,细节和对比度分辨率的参数来获取横向轴线垂直于观察方向的数据(即,显示横向轴线),而沿着横向轴线的平行于 观察方向是以受损的视野,细节或对比度分辨率获得的。 结果,利用2D等效的细节分辨率,对比度分辨率和沿着显示器横向轴的视场来实现高体积率3D成像。
    • 4. 发明授权
    • Medical ultrasound imaging system with composite delay profile
    • 医学超声成像系统具有复合延迟特征
    • US06312386B1
    • 2001-11-06
    • US09253088
    • 1999-02-19
    • Mirsaid BolorforoshChing-Hua ChouAlbert GeeSungrung HuangKutay Ustuner
    • Mirsaid BolorforoshChing-Hua ChouAlbert GeeSungrung HuangKutay Ustuner
    • A61B800
    • G10K11/346
    • A medical ultrasound diagnostic imaging system includes a delay system that applies a composite delay profile to signals to or from respective transducer elements. One composite delay profile includes a first, substantially point-focus delay profile for a first set of the transducer elements and a second, substantially point-focus delay profile for a second set of the transducer elements. The first and second delay profiles cause ultrasonic energy from the respective first and second sets of the transducer elements to constructively add at first and second respective spaced focal zones in either transmit or receive. Another composite delay profile includes first and second portions that substantially correspond to respective parts of a point-focus delay profile, and third and fourth portions that are intermediate the point-focus delay profile and respective tangents.
    • 医疗超声诊断成像系统包括延迟系统,该延迟系统将复合延迟分布应用于来自相应换能器元件的信号。 一个复合延迟分布包括用于第一组换能器元件的第一基本点聚焦延迟分布和用于第二组换能器元件的第二基本点聚焦延迟分布。 第一和第二延迟分布引起来自相应的第一组和第二组换能器元件的超声波能量以在发射或接收中的第一和第二相应间隔的聚焦区建设性地增加。 另一个复合延迟分布包括基本对应于点聚焦延迟分布的各个部分的第一和第二部分以及位于点聚焦延迟分布和相应切线之间的第三和第四部分。
    • 5. 发明申请
    • ULTRASOUND DISPLACEMENT IMAGING WITH SPATIAL COMPOUNDING
    • 超声波位移成像与空间化合物
    • US20090203997A1
    • 2009-08-13
    • US12027957
    • 2008-02-07
    • Kutay Ustuner
    • Kutay Ustuner
    • A61B8/00
    • A61B8/08A61B8/485G01S7/52042G01S7/5206G01S7/52071G01S15/8995
    • Artifacts in ultrasound displacement images are reduced by combining multiple component displacement images. For each component displacement image first a pre-displacement ultrasound image is generated from a particular imaging angle. Then a displacement force is applied on the object at a desired displacement angle via an ultrasound or other mechanical force. Then a post-displacement ultrasound image is generated from the same imaging angle. A component displacement image is generated by correlating the pre-displacement and post-displacement ultrasound images. The above steps are repeated for at least one other (imaging angle, displacement angle) pair, and the resulting component displacement images are combined to reduce displacement image artifacts.
    • 通过组合多组分位移图像来减少超声位移图像中的伪像。 对于每个分量位移图像,首先从特定成像角度生成预位移超声图像。 然后,通过超声波或其他机械力,以期望的位移角度对物体施加位移力。 然后从相同的成像角度生成位移后超声图像。 通过将前置位移和后位移超声图像相关联来生成分量位移图像。 对于至少一个其它(成像角度,位移角)对重复上述步骤,并且组合所得到的分量位移图像以减少位移图像伪像。
    • 9. 发明申请
    • Coherence factor adaptive ultrasound imaging methods and systems
    • 相干因子自适应超声成像方法和系统
    • US20050228279A1
    • 2005-10-13
    • US10814959
    • 2004-03-31
    • Kutay UstunerPai-Chi LiMeng-Lin LiLewis ThomasAlbert Gee
    • Kutay UstunerPai-Chi LiMeng-Lin LiLewis ThomasAlbert Gee
    • A61B8/14G01S7/52
    • G01S15/8927G01S7/52049
    • Ultrasound imaging adapts as a function of a coherence factor. Various beamforming, image forming or image processing parameters are varied as a function of a coherence factor to improve detail resolution, contrast resolution, dynamic range or SNR. For example, a beamforming parameter such as the transmit or receive aperture size, apodization type or delay is selected to provide maximum coherence. Alternatively or additionally, an image forming parameter, such as the number of beams for coherent synthesis or incoherent compounding, is set as a function of the coherence factor. Alternatively or additionally an image processing parameter such as the dynamic range, linear or nonlinear video filter and/or linear or nonlinear map may also adapt as a function of the coherence factor.
    • 超声成像适应相干因子的函数。 各种波束成形,图像形成或图像处理参数作为相干因子的函数而变化,以提高细节分辨率,对比度分辨率,动态范围或SNR。 例如,选择诸如发射或接收孔径大小,变迹类型或延迟的波束形成参数以提供最大相干性。 或者或另外,将诸如用于相干合成或非相干复合的光束的数量的图像形成参数设置为相干因子的函数。 替代地或附加地,诸如动态范围,线性或非线性视频滤波器和/或线性或非线性映射的图像处理参数也可以作为相干因子的函数来适应。