会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • SOI wafer and a method of producing the same
    • SOI晶片及其制造方法
    • US07357839B2
    • 2008-04-15
    • US10554960
    • 2004-05-07
    • Kiyotaka TakanoHitoshi Tsunoda
    • Kiyotaka TakanoHitoshi Tsunoda
    • C30B35/00C03C27/02
    • H01L21/76251Y10S65/08Y10T117/10
    • The present invention provides an SOI wafer having at least an SOI layer, in which a plain orientation of the SOI layer is off-angled from {110} only in a direction to , and an off-angle is from 5 minutes to 2 degrees, and a method of producing an SOI wafer comprising at least bonding a base wafer and a bond wafer consisting of a silicon single crystal, and forming an SOI layer by thinning the bond wafer, wherein the bond wafer is used where a plain orientation thereof is off-angled from {110} only in a direction to , and an off-angle is from 5 minutes to 2 degrees. Thereby, there can be provided an SOI wafer having both high uniformity of film thickness and good micro-roughness to be suitable for fabricating high speed devices, and provided a method of producing the SOI wafer.
    • 本发明提供了至少具有SOI层的SOI晶片,其中SOI层的平坦取向仅在{110}仅在<100>的方向偏角,偏角为5分钟至 以及制造SOI晶片的方法,所述SOI晶片至少包括接合由硅单晶构成的基底晶片和接合晶片,并且通过使所述接合晶片变薄来形成SOI层,其中所述接合晶片用于平坦取向 其从{110}仅在<100>的方向偏角,偏角为5分钟至2度。 由此,可以提供具有均匀性均匀的膜厚和良好的微粗糙度的SOI晶片,以适合于制造高速器件,并提供了制造SOI晶片的方法。
    • 2. 发明申请
    • Soi wafer and process for producing the same
    • Soi晶圆和生产过程相同
    • US20060246689A1
    • 2006-11-02
    • US10554960
    • 2004-05-07
    • Kiyotaka TakanoHitoshi Tsunoda
    • Kiyotaka TakanoHitoshi Tsunoda
    • H01L21/30H01L21/46H01L27/12H01L27/01H01L31/0392
    • H01L21/76251Y10S65/08Y10T117/10
    • The present invention provides an SOI wafer having at least an SOI layer, in which a plain orientation of the SOI layer is off-angled from {110} only in a direction to , and an off-angle is from 5 minutes to 2 degrees, and a method of producing an SOI wafer comprising at least bonding a base wafer and a bond wafer consisting of a silicon single crystal, and forming an SOI layer by thinning the bond wafer, wherein the bond wafer is used where a plain orientation thereof is off-angled from {110} only in a direction to , and an off-angle is from 5 minutes to 2 degrees. Thereby, there can be provided an SOI wafer having both high uniformity of film thickness and good micro-roughness to be suitable for fabricating high speed devices, and provided a method of producing the SOI wafer.
    • 本发明提供了至少具有SOI层的SOI晶片,其中SOI层的平坦取向仅在{110}仅在<100>的方向偏角,偏角为5分钟至 以及制造SOI晶片的方法,所述SOI晶片至少包括接合由硅单晶构成的基底晶片和接合晶片,并且通过使所述接合晶片变薄来形成SOI层,其中所述接合晶片用于平坦取向 其从{110}仅在<100>的方向偏角,偏角为5分钟至2度。 由此,可以提供具有均匀性均匀的膜厚和良好的微粗糙度的SOI晶片,以适合于制造高速器件,并提供了制造SOI晶片的方法。
    • 3. 发明申请
    • Method of producing soi wafer and soi wafer
    • 生产硅晶片和硅片的方法
    • US20050118789A1
    • 2005-06-02
    • US10507175
    • 2003-12-25
    • Hiroji AgaIsao YokokawaKiyotaka TakanoKiyoshi Mitani
    • Hiroji AgaIsao YokokawaKiyotaka TakanoKiyoshi Mitani
    • H01L21/02H01L21/265H01L21/762H01L27/12H01L21/30H01L21/46
    • H01L21/26533H01L21/76254
    • The present invention relates to a method of producing an SOI wafer in which an SOI layer is formed on a buried oxide film by forming an oxide film on a surface of at least one of a bond wafer and a base wafer, bonding the bond wafer to the base wafer through the formed oxide film, and making the bond wafer into a thin film, wherein after the oxide film is formed so that a total thickness of the oxide film formed on the surface of at least one of the bond wafer and the base wafer is thicker than a thickness of the buried oxide film that the SOI wafer to be produced has, the bond wafer is bonded to the base wafer through the formed oxide film, the bond wafer is made into a thin film to form an SOI layer, and thereafter, an obtained bonded wafer is subjected to heat treatment to reduce a thickness of the buried oxide film. Thereby, there can be provided a method of producing an SOI wafer in which blisters and voids are not generated even if the thickness of the buried oxide film is thinned, and its SOI layer has extremely good crystallinity.
    • 本发明涉及一种制造SOI晶片的方法,其中通过在接合晶片和基底晶片中的至少一个的表面上形成氧化膜,在掩埋氧化膜上形成SOI层,将接合晶片接合到 通过形成的氧化膜的基底晶片,并将接合晶片制成薄膜,其中在形成氧化物膜之后,使得形成在至少一个接合晶片和基底的表面上的氧化膜的总厚度 晶片比所制造的SOI晶片的埋入氧化膜的厚度厚,通过形成的氧化膜将接合晶片接合到基底晶片,将接合晶片制成薄膜以形成SOI层, 然后,对获得的接合晶片进行热处理以减小掩埋氧化膜的厚度。 因此,可以提供一种制造SOI晶片的方法,其中即使掩埋氧化膜的厚度变薄也不会产生起泡和空隙,并且其SOI层具有非常好的结晶度。
    • 5. 发明授权
    • Method for manufacturing silicon single crystal
    • 硅单晶的制造方法
    • US09499924B2
    • 2016-11-22
    • US14236977
    • 2012-08-02
    • Akihiro KimuraKiyotaka TakanoJunya Tokue
    • Akihiro KimuraKiyotaka TakanoJunya Tokue
    • C30B15/10C30B15/22C30B15/00C30B29/06
    • C30B15/22C30B15/00C30B15/10C30B29/06
    • There is provided a method for manufacturing a silicon single crystal, the method includes: a raw material melting step of melting polycrystalline silicon accommodated in a crucible to obtain a silicon melt; and bringing a seed crystal into contact with the silicon melt and pulling up the seed crystal to grow the silicon single crystal, wherein, after the raw material melting step and before the pulling step, there are performed: a cristobalitizing step of leaving the silicon melt at a predetermined number of rotations of the crucible with a predetermined gas flow rate and a predetermined furnace pressure to generate cristobalite while applying a magnetic field; and a dissolving step of partially dissolving the cristobalite by carrying out any one of an increase in number of rotations of the crucible, an increase in gas flow rate, and a reduction in furnace pressure beyond counterpart figures in the cristobalitizing step.
    • 提供一种制造单晶硅的方法,该方法包括:将容纳在坩埚中的多晶硅熔化以获得硅熔体的原料熔化步骤; 并使晶种与硅熔体接触并拉出晶种以生长硅单晶,其中在原料熔化步骤之后和拉制步骤之前,进行:将硅熔体离开的方圆化步骤 以规定的气体流量和规定的炉压进行坩埚的预定转数,以施加磁场而产生方英石; 以及通过进行坩埚转数增加,气体流量增加和炉压力下降中的任何一个部分溶解方英石的溶解步骤,超过了对立图中的曲线图。
    • 7. 发明授权
    • Silicon single crystal with no crystal defect in peripheral part of
wafer and process for producing the same
    • 晶圆周边部分没有晶体缺陷的硅单晶及其制造方法
    • US6120749A
    • 2000-09-19
    • US101941
    • 1998-07-17
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • C30B15/22C30B15/00C30B29/06H01L21/02H01L21/208C31B33/00
    • C30B29/06C30B15/00Y10S257/913
    • A silicon single-crystal wafer having a diameter of 6 inches or larger and improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof is provided to thereby heighten the yield of device chips produced per wafer. This wafer has no crystal defects with regard to the dielectric breakdown strength of oxide film in its peripheral region which extends from the circumference and accounts for up to 50% of the total area, in particular which extends from the circumference to a circle 30 mm apart from the circumference. A process for producing a silicon single crystal for easily producing, by the Czochralski method, a silicon single-crystal wafer improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof without considerably lowering the production efficiency is provided. In this process, the silicon single crystal which is being grown by the Czochralski method is pulled at a rate which is 80 to 60% of the critical pull rate inherent in the pulling apparatus.
    • PCT No.PCT / JP97 / 00090 Sec。 371日期:1998年7月17日 102(e)日期1998年7月17日PCT 1997年1月17日PCT PCT。 WO97 / 26393 PCT出版物 日期1997年7月24日提供直径为6英寸或更大并且提高了氧化膜的绝缘击穿强度的硅单晶晶片,特别是其周边部分,从而提高了每片晶片产生的器件芯片的产量。 该晶片在其周边区域中的氧化膜的介电击穿强度方面没有晶体缺陷,其从圆周延伸并占总面积的50%,特别是从圆周延伸到相隔30mm的圆 从圆周。 提供了一种用于通过切克劳斯斯克方法生产硅单晶的方法,其提供了特别在其周边部分提高氧化膜的介电击穿强度的硅单晶晶片,而不会显着降低生产效率。 在这个过程中,以切克劳斯基法生长的硅单晶以牵引装置固有的临界拉伸速率的80%至60%的速率被拉伸。
    • 9. 发明授权
    • Manufacturing method of single crystal
    • 单晶的制造方法
    • US5792255A
    • 1998-08-11
    • US655201
    • 1996-05-30
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • Eiichi IinoKiyotaka TakanoMasanori KimuraHirotoshi Yamagishi
    • C30B15/00C30B15/20C30B15/30C30B29/06C30B30/04C30B15/22
    • C30B15/305Y10S117/917Y10T117/1068
    • In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion. Compared with the conventional HMCZ method, an uniformity of an intensity distribution of the magnetic field applied to the melt is increased so that a suppression effect on the melt convection all over the crucible is enhanced.
    • 在通过水平磁场施加的CZ方法的单晶制造方法中,其中线圈彼此同轴地布置坩埚,构成磁场施加装置的超导电磁体的线圈和硅晶体在施加时从坩埚中的熔体拉出 熔体的水平磁场; 设置能够精细地调整超导电磁体和坩埚在垂直方向上的相对位置的冲压装置。 通过用升降装置升高坩埚来消除熔体深度方向上的中心部分Cm的下降,伴随着牵引单晶的过程的下降,超导电磁体的线圈中心轴Cc总是 通过中心部分Cm或者低于该部分。 与传统的HMCZ方法相比,施加到熔体的磁场的强度分布的均匀性增加,从而增强了对整个坩埚的熔体对流的抑制效果。