会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for forming fine patterns in a semiconductor device
    • 在半导体器件中形成精细图案的方法
    • US5476807A
    • 1995-12-19
    • US227534
    • 1994-04-14
    • Kang-hyun LeeJong-seo HongHyoung-sub KimJae-ho KimMin-seog Han
    • Kang-hyun LeeJong-seo HongHyoung-sub KimJae-ho KimMin-seog Han
    • H01L21/302H01L21/02H01L21/033H01L21/3065H01L21/8242H01L21/00
    • H01L27/10852H01L21/0337H01L28/88
    • A method for forming a fine pattern, e.g., for forming the storage electrodes of the capacitors of the memory cells of semiconductor memory devices, which includes the steps of depositing a mask layer on the layer to be patterned, depositing a photoresist layer on the mask layer, patterning the photoresist layer, to thereby form a photoresist pattern, anisotropically etching the mask layer, using the photoresist pattern as an etching mask, to thereby form a mask layer pattern, wherein etch by-products are formed on sidewalls of a composite layer comprised of the photoresist pattern and the mask layer pattern, and, etching the layer to be patterned using the composite layer and the etch by-products as an etching mask, to thereby form a fine pattern. The mask layer is made of a material, e.g., a high-temperature oxide, having different physical properties than that of the photoresist. Further, the anisotropic etching process is preferably carried out by means of a plasma etching process using a mixture of CF.sub.4, CHF.sub.4, and Ar gases, with the amount of the etch by-products being controllably adjusted by the ratio of these gases, and/or by controllably adjusting the time, temperature, and/or pressure parameters of this anisotropic etching process.
    • 一种用于形成精细图案的方法,例如,用于形成半导体存储器件的存储单元的电容器的存储电极,其包括以下步骤:在待图案化的层上沉积掩模层;在掩模上沉积光致抗蚀剂层 层,图案化光致抗蚀剂层,从而形成光致抗蚀剂图案,使用光致抗蚀剂图案作为蚀刻掩模,各向异性地蚀刻掩模层,从而形成掩模层图案,其中在复合层的侧壁上形成蚀刻副产物 由光致抗蚀剂图案和掩模层图案组成,并且使用复合层蚀刻待图案化层和蚀刻副产物作为蚀刻掩模,从而形成精细图案。 掩模层由具有与光致抗蚀剂不同的物理性质的材料,例如高温氧化物制成。 此外,各向异性蚀刻工艺优选通过使用CF 4,CHF 4和Ar气体的混合物的等离子体蚀刻工艺进行,其中蚀刻副产物的量可由这些气体的比例可控地调节,和/ 或通过可控地调节该各向异性蚀刻工艺的时间,温度和/或压力参数。
    • 2. 发明授权
    • Transistor having reverse self-aligned structure
    • 晶体管具有反向自对准结构
    • US06218690B1
    • 2001-04-17
    • US09376041
    • 1999-08-16
    • Hyoung-sub KimJa-hum KuChul-sung KimJung-woo Park
    • Hyoung-sub KimJa-hum KuChul-sung KimJung-woo Park
    • H01L2976
    • H01L29/66606H01L29/66621
    • A reverse self-aligned field effect transistor and a method of fabricating the same are provided. The reverse self-aligned transistor includes a source formed on an active region of a semiconductor substrate and a drain formed on the active region of the semiconductor substrate, the drain being positioned a predetermined distance from the source. A silicide film is formed on the source and the drain. Insulative film spacers are formed on sidewalls of a trench, the trench being formed by etchin the semiconductor substrate between the source and the drain. A gate insulative film is formed on a lower portion of the trench and a metal gate is formed on the gate insulative film between the insulative film spacers. The metal gate is electrically isolated from the source and the drain by the insulative film spacers.
    • 提供了反向自对准场效应晶体管及其制造方法。 反向自对准晶体管包括形成在半导体衬底的有源区上的源极和形成在半导体衬底的有源区上的漏极,漏极位于与源极预定的距离处。 在源极和漏极上形成硅化物膜。 绝缘膜间隔物形成在沟槽的侧壁上,沟槽通过蚀刻在源极和漏极之间的半导体衬底形成。 栅极绝缘膜形成在沟槽的下部,并且在绝缘膜间隔物上的栅极绝缘膜上形成金属栅极。 金属栅极通过绝缘膜间隔物与源极和漏极电隔离。
    • 4. 发明授权
    • Method of forming a semiconductor device having vertical conduction
transistors and cylindrical cell gates
    • 形成具有垂直导电晶体管和圆柱形单元栅极的半导体器件的方法
    • US5547889A
    • 1996-08-20
    • US442713
    • 1995-05-08
    • Hyoung-sub Kim
    • Hyoung-sub Kim
    • H01L21/76H01L21/8242H01L27/10H01L27/108H01L29/78H01L21/70H01L27/00
    • H01L27/10823
    • A semiconductor device, e.g., a DRAM, having vertical conduction transistors and cylindrical cell gates, which includes a plurality of spaced-apart trench isolation regions formed in a semiconductor substrate, a plurality of bit lines formed on the semiconductor substrate, a silicon pillar formed on each bit line, a gate insulating layer and gate line formed on each silicon pillar in surrounding relationship thereto, a planarizing layer formed in recesses in the gate lines, an insulating layer formed on the upper surfaces of the gate line and planarizing layer, a plurality of contact holes provided in vertically aligned portions of the insulating layer, the gate line, and the gate insulating layer located above respective ones of the silicon pillars, and, a storage node of a capacitor formed with the contact holes and adjacent surface portions of the insulating layer, in contact with the source region of respective ones of the silicon pillars. Each of the silicon pillars includes vertically stacked layers which serve as respective drain, channel, and source regions of a transistor.
    • 具有垂直导电晶体管和圆柱形单元栅极的半导体器件,例如DRAM,其包括形成在半导体衬底中的多个间隔开的沟槽隔离区,形成在半导体衬底上的多个位线,形成的硅柱 在每个位线上形成栅极绝缘层和形成在每个硅柱上的栅极线与其周围的关系,形成在栅极线中的凹槽中的平坦化层,形成在栅极线和平坦化层的上表面上的绝缘层, 多个接触孔设置在绝缘层,栅极线和栅极绝缘层的垂直对齐部分中,位于硅柱之上,并且形成有电容器的存储节点,其形成有接触孔和相邻的表面部分 绝缘层与各个硅柱的源极区域接触。 每个硅柱包括用作晶体管的相应漏极,沟道和源极区的垂直层叠层。
    • 9. 发明授权
    • Methods of forming semiconductor devices in substrates having
inverted-trench isolation regions therein
    • 在其中具有反向沟槽隔离区的衬底中形成半导体器件的方法
    • US5753562A
    • 1998-05-19
    • US766781
    • 1996-12-13
    • Hyoung-sub Kim
    • Hyoung-sub Kim
    • H01L21/76H01L21/762H01L29/78
    • H01L21/76224Y10S438/977
    • Methods of forming semiconductor substrates having inverted-trench isolation regions therein include the steps of forming at least one trench in a semiconductor substrate at a first face thereof and then forming a stopping layer on the bottom of the trench. An etching or polishing step is then performed on a second face of the substrate which extends opposite the first face, until the stopping layer is exposed. Semiconductor devices are then formed in the remaining portions of the substrate extending adjacent sidewalls of the trench, at the polished second face. In particular, first and second trenches are preferably formed at a first face of a first semiconductor substrate and then respective first and second stopping layers comprising silicon nitride are formed on bottoms of the first and second trenches. First and second electrically insulating layers (e.g., SiO.sub.2) are then formed on the first and second stopping layers, to fill the first and second trenches. The electrically insulating layers are then polished using a chemical-mechanical polishing step to form a substantially planar surface to which a second substrate is preferably bonded. A second face of the first substrate, extending opposite the first face, is then polished until the stopping layers are exposed and a smooth semiconductor surface is defined extending between the first and second trenches. Semiconductor devices are then formed in the substrate, opposite the smooth semiconductor surface and between the insulation-filled trenches.
    • 形成其中具有反向沟槽隔离区域的半导体衬底的方法包括以下步骤:在半导体衬底的第一面处形成至少一个沟槽,然后在沟槽的底部形成阻挡层。 然后在衬底的与第一面相对延伸的第二面上执行蚀刻或抛光步骤,直到暴露停止层。 然后在抛光的第二面处,在衬底的相邻侧壁延伸的衬底的其余部分中形成半导体器件。 特别地,第一和第二沟槽优选地形成在第一半导体衬底的第一面上,然后在第一和第二沟槽的底部形成包括氮化硅的各自的第一和第二阻挡层。 然后在第一和第二停止层上形成第一和第二电绝缘层(例如SiO 2),以填充第一和第二沟槽。 然后使用化学 - 机械抛光步骤对电绝缘层进行抛光,以形成基本上平坦的表面,优选地将第二衬底接合。 然后抛光第一衬底的与第一面相对延伸的第二面,直到暴露停止层,并且限定平滑的半导体表面在第一和第二沟槽之间延伸。 然后在衬底中形成半导体器件,与光滑半导体表面和绝缘填充沟槽相对。